TensorRT-LLMs/cpp/tensorrt_llm/executor/executor.cpp
jthomson04 1b588f8390
feat: KV events for sliding window attention (#5580)
Signed-off-by: jthomson04 <jwillthomson19@gmail.com>
2025-07-05 06:05:20 +08:00

143 lines
4.5 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <tensorrt_llm/executor/executor.h>
#include <tensorrt_llm/executor/executorImpl.h>
namespace tensorrt_llm::executor
{
Executor::Executor(std::filesystem::path const& modelPath, ModelType modelType, ExecutorConfig const& executorConfig)
: mImpl(std::make_unique<Executor::Impl>(modelPath, std::nullopt, modelType, executorConfig))
{
}
Executor::Executor(std::filesystem::path const& encoderModelPath, std::filesystem::path const& decoderModelPath,
ModelType modelType, ExecutorConfig const& executorConfig)
: mImpl(std::make_unique<Executor::Impl>(decoderModelPath, encoderModelPath, modelType, executorConfig))
{
}
Executor::Executor(BufferView const& engineBuffer, std::string const& jsonConfigStr, ModelType modelType,
ExecutorConfig const& executorConfig, std::optional<std::map<std::string, Tensor>> const& managedWeights)
: mImpl(std::make_unique<Executor::Impl>(
engineBuffer, jsonConfigStr, std::nullopt, std::nullopt, modelType, executorConfig, managedWeights))
{
}
Executor::Executor(BufferView const& encoderEngineBuffer, std::string const& encoderJsonConfigStr,
BufferView const& decoderEngineBuffer, std::string const& decoderJsonConfigStr, ModelType modelType,
ExecutorConfig const& executorConfig)
: mImpl(std::make_unique<Executor::Impl>(decoderEngineBuffer, decoderJsonConfigStr, encoderEngineBuffer,
encoderJsonConfigStr, modelType, executorConfig, std::nullopt))
{
}
Executor::Executor(std::shared_ptr<Model> model, ExecutorConfig const& executorConfig)
: mImpl(std::make_unique<Executor::Impl>(std::move(model), std::nullopt, executorConfig))
{
}
Executor::Executor(
std::shared_ptr<Model> encoderModel, std::shared_ptr<Model> decoderModel, ExecutorConfig const& executorConfig)
: mImpl(std::make_unique<Executor::Impl>(std::move(decoderModel), std::move(encoderModel), executorConfig))
{
}
Executor::~Executor() = default;
IdType Executor::enqueueRequest(Request const& llmRequest)
{
return mImpl->enqueueRequest(llmRequest);
}
std::vector<IdType> Executor::enqueueRequests(std::vector<Request> const& llmRequests)
{
return mImpl->enqueueRequests(llmRequests);
}
std::vector<Response> Executor::awaitResponses(std::optional<std::chrono::milliseconds> const& timeout)
{
return mImpl->awaitResponses(timeout);
}
std::vector<Response> Executor::awaitResponses(
IdType const& requestId, std::optional<std::chrono::milliseconds> const& timeout)
{
return mImpl->awaitResponses(requestId, timeout);
}
std::vector<std::vector<Response>> Executor::awaitResponses(
std::vector<IdType> const& requestIds, std::optional<std::chrono::milliseconds> const& timeout)
{
return mImpl->awaitResponses(requestIds, timeout);
}
SizeType32 Executor::getNumResponsesReady(std::optional<IdType> const& requestId) const
{
return mImpl->getNumResponsesReady(requestId);
}
void Executor::cancelRequest(IdType requestId)
{
return mImpl->cancelRequest(requestId);
}
void Executor::shutdown()
{
return mImpl->shutdown();
}
std::deque<IterationStats> Executor::getLatestIterationStats()
{
return mImpl->getLatestIterationStats();
}
std::deque<RequestStatsPerIteration> Executor::getLatestRequestStats()
{
return mImpl->getLatestRequestStats();
}
std::deque<DebugTensorsPerIteration> Executor::getLatestDebugTensors()
{
return mImpl->getLatestDebugTensors();
}
bool Executor::canEnqueueRequests() const
{
return mImpl->canEnqueueRequests();
}
bool Executor::isParticipant() const
{
return mImpl->isParticipant();
}
std::optional<std::shared_ptr<KVCacheEventManager>> Executor::getKVCacheEventManager() const
{
return mImpl->getKVCacheEventManager();
}
KVCacheEvent::KVCacheEvent(size_t eventId, KVCacheEventData data, SizeType32 windowSize)
: eventId{eventId}
, data{std::move(data)}
, windowSize{windowSize}
{
}
} // namespace tensorrt_llm::executor