mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: Izzy Putterman <iputterman@nvidia.com> Co-authored-by: Mike Iovine <miovine@nvidia.com>
212 lines
7.3 KiB
Python
212 lines
7.3 KiB
Python
import copy
|
|
from dataclasses import dataclass, field
|
|
from enum import IntEnum, auto
|
|
from typing import List, Optional, Type
|
|
|
|
import torch
|
|
|
|
from ..._utils import get_sm_version
|
|
from ..attention_backend.trtllm import AttentionBackend, TrtllmAttention
|
|
|
|
|
|
class SpeculativeDecodingMode(IntEnum):
|
|
MTP = auto()
|
|
MTP_EAGLE = auto()
|
|
EAGLE3 = auto()
|
|
EAGLE3_ONE_MODEL = auto()
|
|
NGRAM = auto()
|
|
DRAFT_TARGET = auto()
|
|
USER_PROVIDED = auto()
|
|
NONE = auto()
|
|
AUTO = auto()
|
|
|
|
def is_mtp(self):
|
|
return self == SpeculativeDecodingMode.MTP or self == SpeculativeDecodingMode.MTP_EAGLE
|
|
|
|
def is_mtp_vanilla(self):
|
|
return self == SpeculativeDecodingMode.MTP
|
|
|
|
def is_mtp_eagle(self):
|
|
return self == SpeculativeDecodingMode.MTP_EAGLE
|
|
|
|
def is_eagle3(self):
|
|
return self == SpeculativeDecodingMode.EAGLE3
|
|
|
|
def use_one_engine(self):
|
|
return self.is_mtp() or self.is_eagle3_one_model()
|
|
|
|
def is_eagle3_one_model(self):
|
|
return self == SpeculativeDecodingMode.EAGLE3_ONE_MODEL
|
|
|
|
def is_ngram(self):
|
|
return self == SpeculativeDecodingMode.NGRAM
|
|
|
|
def is_user_provided(self):
|
|
return self == SpeculativeDecodingMode.USER_PROVIDED
|
|
|
|
def is_none(self):
|
|
return self == SpeculativeDecodingMode.NONE
|
|
|
|
def is_draft_target(self):
|
|
return self == SpeculativeDecodingMode.DRAFT_TARGET
|
|
|
|
def without_logits(self):
|
|
return self.is_mtp() or self.is_eagle3_one_model()
|
|
|
|
def needs_kv_cache_rewind(self):
|
|
return self.is_mtp() or self.is_eagle3_one_model() or self.is_ngram()
|
|
|
|
def support_overlap_scheduler(self):
|
|
return self.is_mtp() or self.is_eagle3_one_model()
|
|
|
|
def has_draft_model(self):
|
|
return self.is_eagle3() or self.is_draft_target()
|
|
|
|
def needs_kv_cache_recompute(self):
|
|
"""
|
|
Whether the draft model needs to recompute the kv cache.
|
|
If true, the 1st draft model forward will recompute the kv cache for
|
|
the accepted draft tokens.
|
|
"""
|
|
return self.is_eagle3()
|
|
|
|
def need_load_draft_weights(self):
|
|
"""
|
|
Whether the draft model and target model are in the same model engine,
|
|
and the draft model needs to load weights from the separate checkpoint.
|
|
"""
|
|
return self.is_eagle3_one_model()
|
|
|
|
def has_spec_decoder(self):
|
|
return self.is_mtp() or self.is_eagle3() or self.is_eagle3_one_model()
|
|
|
|
def has_spec_drafter(self):
|
|
return self.is_eagle3() or self.is_draft_target() or self.is_ngram(
|
|
) or self.is_user_provided()
|
|
|
|
def extend_ctx(self, attention_backend: Type[AttentionBackend]):
|
|
"""
|
|
If true, treat generation requests with draft tokens as
|
|
chunked context requests at the kernel level. Required for
|
|
any spec dec mode that uses the SpecExecutor.
|
|
"""
|
|
|
|
if self.use_one_engine():
|
|
# 1-model has separate logic for handling draft tokens
|
|
return False
|
|
|
|
# The special XQA generation kernels only exist with the TRTLLM backend on blackwell.
|
|
return not issubclass(attention_backend,
|
|
TrtllmAttention) or get_sm_version() != 100
|
|
|
|
def attention_need_spec_dec_mode(self):
|
|
"""
|
|
If true, the attention backend kernel needs to run in spec-dec mode (multi-token query mode).
|
|
"""
|
|
return self.is_eagle3_one_model()
|
|
|
|
@staticmethod
|
|
def from_string(name: Optional[str]) -> "SpeculativeDecodingMode":
|
|
if name is None:
|
|
return SpeculativeDecodingMode.NONE
|
|
return SpeculativeDecodingMode[name.upper()]
|
|
|
|
|
|
@dataclass
|
|
class SpecMetadata:
|
|
"""
|
|
Metadata for speculative decoding.
|
|
"""
|
|
# The max number of requests in a single batch.
|
|
max_num_requests: int
|
|
# The max number of draft tokens.
|
|
max_draft_len: int
|
|
# The number of gen-phase sequences in the batch.
|
|
num_generations: int = 0
|
|
# Whether CUDA graph is enabled.
|
|
is_cuda_graph: bool = field(default=False, repr=False)
|
|
# The mode of speculative decoding.
|
|
spec_dec_mode: SpeculativeDecodingMode = SpeculativeDecodingMode.NONE,
|
|
# Draft tokens.
|
|
draft_tokens: Optional[torch.Tensor] = None,
|
|
# The length of the draft tokens.
|
|
draft_lens: Optional[torch.Tensor] = None,
|
|
# The request ID of each sequence in the batch.
|
|
# The shape is (batch_size).
|
|
request_ids: Optional[List[int]] = None
|
|
# Sequence length for each request.
|
|
seq_lens: Optional[List[int]] = None
|
|
# The gather ids for logits.
|
|
gather_ids: Optional[torch.Tensor] = None
|
|
# The number of tokens for speculative model/layer
|
|
num_tokens: int = 0
|
|
# The number of tokens for speculative model/layer of different rank
|
|
_all_rank_num_tokens: Optional[List[int]] = field(init=False,
|
|
default=None,
|
|
repr=False)
|
|
all_rank_num_tokens: Optional[List[int]]
|
|
# The max number of tokens among all ranks.
|
|
all_rank_max_num_tokens: Optional[int] = None
|
|
|
|
# The number of sequences for speculative model/layer of different rank
|
|
all_rank_num_seqs: Optional[List[int]] = None
|
|
# The number of extra kv tokens
|
|
# Some speculative decoding methods need to use different kv lengths for the
|
|
# draft/target layers. But KVCacheManager can only support kv caches with the
|
|
# same kv lengths for different layers. Add extra kv token in kv cache manager
|
|
# to handle this issue.
|
|
num_extra_kv_tokens: Optional[int] = 0 # Number of layers in target model
|
|
# The number of layers
|
|
num_layers: int = 0
|
|
|
|
# if spec-dec tree is a tree or a chain (linear tree)
|
|
is_spec_dec_tree: bool = False
|
|
# if spec-dec tree wouldn't be changed at all, the mask won't be computed every step.
|
|
is_spec_dec_dynamic_tree: bool = False
|
|
|
|
def __post_init__(self):
|
|
pass
|
|
|
|
def prepare(self):
|
|
"""
|
|
Hook to be called before the forward step of the model.
|
|
"""
|
|
|
|
def create_cuda_graph_metadata(self, max_batch_size: int):
|
|
"""
|
|
Creates metadata for CUDA graph execution.
|
|
"""
|
|
if self.is_cuda_graph:
|
|
return self
|
|
|
|
cuda_graph_metadata = copy.copy(self)
|
|
cuda_graph_metadata.is_cuda_graph = True
|
|
cuda_graph_metadata.max_num_requests = max_batch_size
|
|
cuda_graph_metadata.__post_init__()
|
|
return cuda_graph_metadata
|
|
|
|
def is_layer_capture(self, layer_id: int):
|
|
"""
|
|
Whether the layer should be captured (eg for Eagle3).
|
|
By default, does nothing.
|
|
"""
|
|
return False
|
|
|
|
def maybe_capture_hidden_states(self, layer_id: int,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor) -> None:
|
|
"""
|
|
Some spec decode algorithms require hidden states from the target
|
|
model. Use this method to record them. By default, does nothing.
|
|
"""
|
|
|
|
@property
|
|
def all_rank_num_tokens(self) -> Optional[List[int]]:
|
|
return self._all_rank_num_tokens
|
|
|
|
@all_rank_num_tokens.setter
|
|
def all_rank_num_tokens(self, value: Optional[List[int]]):
|
|
value = value if value is not SpecMetadata.all_rank_num_tokens else None
|
|
self._all_rank_num_tokens = value
|
|
self.all_rank_max_num_tokens = max(value) if value is not None else None
|