mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
141 lines
5.8 KiB
C++
141 lines
5.8 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/batch_manager/common.h"
|
|
#include "tensorrt_llm/runtime/bufferManager.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
#include "tensorrt_llm/runtime/modelConfig.h"
|
|
#include "tensorrt_llm/runtime/tllmRuntime.h"
|
|
#include "tensorrt_llm/runtime/worldConfig.h"
|
|
|
|
namespace tensorrt_llm::batch_manager
|
|
{
|
|
|
|
class EncoderBuffers
|
|
{
|
|
public:
|
|
using SizeType32 = tensorrt_llm::runtime::SizeType32;
|
|
using ITensor = tensorrt_llm::runtime::ITensor;
|
|
using TensorPtr = runtime::ITensor::SharedPtr;
|
|
using TensorMap = runtime::StringPtrMap<runtime::ITensor>;
|
|
using ModelConfig = runtime::ModelConfig;
|
|
using WorldConfig = runtime::WorldConfig;
|
|
using TllmRuntime = runtime::TllmRuntime;
|
|
|
|
TensorPtr inputIds;
|
|
TensorPtr positionIds = nullptr;
|
|
TensorPtr tokenTypeIds = nullptr;
|
|
|
|
TensorPtr inputLengths; // [numEncoderRequests]
|
|
TensorPtr maxInputLength; // [maxInputLengthInBatch]
|
|
|
|
// intermediate states in pipeline parallelism
|
|
TensorPtr hiddenStates; // [numTokens, hiddenSize]
|
|
|
|
// features for multimodal encoders (audio, image, etc.)
|
|
TensorPtr
|
|
inputFeatures; // [totalNumOfFeatures, featureDim] if remove_padding else [batchSize, featureDim, featureLength]
|
|
|
|
// language adapter routing information for encoders if language adapter is presented.
|
|
TensorPtr languageAdapterRoutings; // [numTokens, numLanguages]
|
|
|
|
// encoder output
|
|
TensorPtr encoderOutput; // [numEncoderTokens, hiddenSize]
|
|
|
|
// output buffer owned by llmRequest, such that it's per-request output buffer
|
|
// encoderBuffers class can init and reshape each buffer, without maintaining a list/set of inflight buffers
|
|
// TODO in progress: to support BS>1 encoder, need (1) internal scratch space tensors to save the contiguous
|
|
// batched output (2) copy from CONTIGUOUS scratch tensor to individual request's DISCRETE output tensor after
|
|
// execution To standardize the implementation, for both BS=1 and BS>1, we use internal buffer to store BS=1/BS>1
|
|
// results, and copy to request's external buffers. For BS=1, this introduces a redundancy copy, but ok for now.
|
|
|
|
EncoderBuffers() = default;
|
|
EncoderBuffers(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
TllmRuntime const& runtime);
|
|
|
|
std::pair<EncoderBuffers::TensorMap const&, EncoderBuffers::TensorMap&> prepareIO(RequestVector const& requests,
|
|
ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime);
|
|
|
|
void rearrangeOutputs(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
TllmRuntime const& runtime);
|
|
|
|
//! @brief set shape of individual request's encoder output (Ptuning embedding table if multimodal)
|
|
void updateReqOutputShape(RequestVector const& requests, TllmRuntime const& runtime, WorldConfig const& worldConfig,
|
|
ModelConfig const& modelConfig);
|
|
|
|
private:
|
|
SizeType32 numRequests{};
|
|
SizeType32 encoderInputLen{};
|
|
SizeType32 encoderOutputLen{};
|
|
SizeType32 maxInputLengthInBatch{}; // max input length in a batch
|
|
|
|
// prefilled with deterministic values to avoid runtime creation
|
|
std::vector<SizeType32> positionIdsReserved;
|
|
std::vector<SizeType32> tokenTypeIdsReserved;
|
|
|
|
// engine I/O
|
|
TensorMap inputMap;
|
|
TensorMap outputMap;
|
|
|
|
void init(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
TllmRuntime const& runtime);
|
|
|
|
//! @brief pre-allocate max buffer sizes during init
|
|
void initBufferSizes(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
TllmRuntime const& runtime);
|
|
|
|
//! @brief update actual buffer usage of requests during runtime
|
|
void updateBufferSizes(RequestVector const& requests, ModelConfig const& modelConfig,
|
|
WorldConfig const& worldConfig, TllmRuntime const& runtime);
|
|
|
|
void reshape(TllmRuntime const& runtime, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
void setFromInputs(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig,
|
|
TllmRuntime const& runtime);
|
|
|
|
void fillIOMaps(ModelConfig const& modelConfig, WorldConfig const& worldConfig);
|
|
|
|
// additional members that are Encoder-Decoder specific
|
|
private:
|
|
TensorPtr encoderOutputReserved; // [1, hiddenSize], dummy tensor for gen phase
|
|
TensorPtr crossKvCacheGen; // [1]
|
|
SizeType32 hiddenSize; // full hidden size (after multiplying tensor parallelism)
|
|
|
|
public:
|
|
void create(SizeType32 maxBatchSize, ModelConfig const& modelConfig, TllmRuntime const& runtime);
|
|
|
|
SizeType32 getMaxInputLengthInBatch() const
|
|
{
|
|
return maxInputLengthInBatch;
|
|
};
|
|
|
|
void setMaxBufferSizes(SizeType32 maxBatchSize, runtime::ModelConfig const& modelConfig);
|
|
|
|
void setBufferSizes(RequestVector const& contextRequests, RequestVector const& genRequests);
|
|
|
|
void reshape();
|
|
|
|
void fill(
|
|
RequestVector const& ctxRequests, RequestVector const& genRequests, runtime::BufferManager const& manager);
|
|
|
|
void insertInputTensors(TensorMap& inputMap);
|
|
};
|
|
|
|
} // namespace tensorrt_llm::batch_manager
|