TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/medusaBuffers.cpp
2025-03-11 21:13:42 +08:00

146 lines
7.3 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/batch_manager/medusaBuffers.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/medusaModule.h"
#include "tensorrt_llm/runtime/utils/speculativeChoicesUtils.h"
namespace tensorrt_llm::batch_manager
{
MedusaBuffers::MedusaBuffers(SizeType32 maxBatchSize, SizeType32 maxBeamWidth, runtime::BufferManager const& manager,
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig,
executor::DecodingConfig const& decodingConfig, runtime::TllmRuntime const& runtime)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_CHECK_WITH_INFO(maxBeamWidth == 1, "Medusa does not support beam search");
auto const& engine = runtime.getEngine();
auto const maxNumSequences = maxBatchSize;
auto const medusaModule = std::dynamic_pointer_cast<tensorrt_llm::runtime::MedusaModule const>(
modelConfig.getSpeculativeDecodingModulePtr());
auto const medusaHeads = medusaModule->getMaxDraftPathLen();
auto const maxPathLen = medusaModule->getMaxPathLen(); // medusaHeads + 1
auto const maxMedusaTokens = medusaModule->getMaxDecodingDraftTokens();
auto const maxDecodingTokens = medusaModule->getMaxDecodingTokens(); // maxMedusaTokens + 1
auto const numPackedMasks = medusaModule->getNumPackedMasks();
auto const vocabSizePadded = modelConfig.getVocabSizePadded(worldConfig.getSize());
if (worldConfig.isLastPipelineParallelRank())
{
auto logitsType = engine.getTensorDataType("medusa_logits");
medusaLogitsDevice = manager.gpu(
ITensor::makeShape({medusaHeads, maxBatchSize, maxDecodingTokens, vocabSizePadded}), logitsType);
}
// Note: reserved for variable sequence length support.
medusaGenerationLengthsHost
= runtime::BufferManager::pinned(ITensor::makeShape({maxNumSequences}), nvinfer1::DataType::kINT32);
// TODO: pack batch and tokensPerStep into one dim to support variable sequence length without padddings.
attentionPackedMaskHost = runtime::BufferManager::pinned(
ITensor::makeShape({maxNumSequences, maxDecodingTokens, numPackedMasks}), nvinfer1::DataType::kINT32);
medusaPositionOffsetsHost = runtime::BufferManager::pinned(
ITensor::makeShape({maxNumSequences, maxDecodingTokens}), nvinfer1::DataType::kINT32);
medusaTreeIdsHost = runtime::BufferManager::pinned(
ITensor::makeShape({maxNumSequences, maxMedusaTokens}), nvinfer1::DataType::kINT32);
medusaPathsHost = runtime::BufferManager::pinned(
ITensor::makeShape({maxNumSequences, maxDecodingTokens, maxPathLen}), nvinfer1::DataType::kINT32);
TensorPtr medusaPositionOffsetsHostSlice = ITensor::slice(medusaPositionOffsetsHost, 0, 1);
medusaPositionOffsetsHostSlice->squeeze(0);
TensorPtr medusaTreeIdsHostSlice = ITensor::slice(medusaTreeIdsHost, 0, 1);
medusaTreeIdsHostSlice->squeeze(0);
TensorPtr medusaPathsHostSlice = ITensor::slice(medusaPathsHost, 0, 1);
medusaPathsHostSlice->squeeze(0);
TensorPtr attentionPackedMaskHostSlice = ITensor::slice(attentionPackedMaskHost, 0, 1);
attentionPackedMaskHostSlice->squeeze(0);
// Init buffers for 1 request
auto const& choices = decodingConfig.getMedusaChoices().value_or(medusaModule->getMedusaChoices());
runtime::utils::initTensorsFromChoices(*medusaModule, choices, mTopKs, medusaGenerationLengthsHost,
medusaPositionOffsetsHostSlice, medusaTreeIdsHostSlice, medusaPathsHostSlice, attentionPackedMaskHostSlice);
auto scatterToBatch = [maxBatchSize, &manager](TensorPtr& data)
{
auto srcSlice = ITensor::slice(data, 0, 1);
// Populate data from the 1st request to the other requests in the batch
for (SizeType32 bi = 1; bi < maxBatchSize; ++bi)
{
auto dstSlice = ITensor::slice(data, bi, 1);
manager.copy(*srcSlice, *dstSlice);
}
};
scatterToBatch(medusaPositionOffsetsHost);
scatterToBatch(medusaTreeIdsHost);
scatterToBatch(medusaPathsHost);
scatterToBatch(attentionPackedMaskHost);
// Copy buffers to device
// 1st dimension of packed mask is num_total_generation_tokens now (packed without paddings).
attentionPackedMaskHost->reshape(ITensor::makeShape({maxNumSequences * maxDecodingTokens, numPackedMasks}));
attentionPackedMaskDevice = manager.copyFrom(*attentionPackedMaskHost, runtime::MemoryType::kGPU);
medusaGenerationLengthsDevice = manager.copyFrom(*medusaGenerationLengthsHost, runtime::MemoryType::kGPU);
medusaPositionOffsetsDevice = manager.copyFrom(*medusaPositionOffsetsHost, runtime::MemoryType::kGPU);
medusaTreeIdsDevice = manager.copyFrom(*medusaTreeIdsHost, runtime::MemoryType::kGPU);
medusaPathsDevice = manager.copyFrom(*medusaPathsHost, runtime::MemoryType::kGPU);
// use speculative decoding buffer
medusaUseSpecDecoding = manager.cpu(ITensor::makeShape({1}), nvinfer1::DataType::kINT32);
runtime::bufferCast<SizeType32>(*medusaUseSpecDecoding)[0] = 1;
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void MedusaBuffers::reshape(SizeType32 /* numCtxSequences */, SizeType32 numGenSequences, SizeType32 tokensPerStep)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto attentionPackedMaskShape = attentionPackedMaskDevice->getShape();
attentionPackedMaskShape.d[0] = numGenSequences * tokensPerStep;
attentionPackedMaskDevice->reshape(attentionPackedMaskShape);
auto medusaGenerationLengthsShape = medusaGenerationLengthsDevice->getShape();
medusaGenerationLengthsShape.d[0] = numGenSequences;
medusaGenerationLengthsDevice->reshape(medusaGenerationLengthsShape);
auto medusaPositionOffsetsShape = medusaPositionOffsetsDevice->getShape();
medusaPositionOffsetsShape.d[0] = numGenSequences;
medusaPositionOffsetsDevice->reshape(medusaPositionOffsetsShape);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
void MedusaBuffers::insertInputTensors(
TensorMap& inputBuffers, TensorMap& outputBuffers, runtime::WorldConfig const& worldConfig) const
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
inputBuffers.insert_or_assign("spec_decoding_packed_mask", attentionPackedMaskDevice);
inputBuffers.insert_or_assign("spec_decoding_generation_lengths", medusaGenerationLengthsDevice);
inputBuffers.insert_or_assign("spec_decoding_position_offsets", medusaPositionOffsetsDevice);
inputBuffers.insert_or_assign("spec_decoding_use", medusaUseSpecDecoding);
if (worldConfig.isLastPipelineParallelRank())
{
outputBuffers.insert_or_assign("medusa_logits", medusaLogitsDevice);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
} // namespace tensorrt_llm::batch_manager