TensorRT-LLMs/tests/functional/test_slice.py
Kaiyu Xie 8dd9c91470
Update TensorRT-LLM (#539)
* Update TensorRT-LLM

---------

Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2023-12-04 18:06:59 +08:00

117 lines
4.3 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
# isort: off
import torch
import tensorrt as trt
# isort: on
from parameterized import parameterized
from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile,
TrtRunner)
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([('float32', ), ('float16')])
def test_slice_1(self, dtype):
# test data
x_shape = (1, 256)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
starts_data = torch.tensor([0, 128]).int()
sizes_data = torch.tensor([1, 1]).int()
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
starts = Tensor(name='starts', shape=(2, ), dtype=trt.int32)
sizes = Tensor(name='sizes', shape=(2, ), dtype=trt.int32)
output = tensorrt_llm.functional.slice(x, starts, sizes).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
profiles = [
Profile().add('starts', (0, 0), (0, 128),
(0, 256)).add('sizes', (1, 1), (1, 1), (1, 256))
]
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
config=CreateConfig(profiles=profiles))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(
feed_dict={
'x': x_data.numpy(),
'starts': starts_data.numpy(),
'sizes': sizes_data.numpy(),
})
# pytorch run
ref = x_data[0:1, 128:129]
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
def test_slice_2(self):
dtype = 'float32'
x_shape = (256, )
slice_length = 128
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
starts = tensorrt_llm.functional.constant(
np.array([0], dtype=np.int32))
output_length = tensorrt_llm.functional.constant(
np.array([0] * slice_length, dtype=np.int32))
sizes = tensorrt_llm.functional.shape(output_length, 0)
output = tensorrt_llm.functional.slice(x, starts,
sizes.view([1])).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
ref = x_data[0:slice_length]
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)