mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: David Clark <215764518+davidclark-nv@users.noreply.github.com> Co-authored-by: Nikita Korobov <14355239+nekorobov@users.noreply.github.com>
186 lines
6.6 KiB
C++
186 lines
6.6 KiB
C++
/*
|
|
* Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <vector>
|
|
|
|
#include "KernelRunner.h"
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "trtllmGen_gemm_export/GemmInterface.h"
|
|
#include "trtllmGen_gemm_export/GemmOptions.h"
|
|
#include "trtllmGen_gemm_export/trtllm/gen/DtypeDecl.h"
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
namespace kernels
|
|
{
|
|
|
|
namespace tg = gemm::trtllm::gen;
|
|
using namespace gemm::gemm;
|
|
|
|
static GemmInterface::ModuleCache globalTrtllmGenGemmModuleCache;
|
|
|
|
TrtllmGenGemmRunner::TrtllmGenGemmRunner(TrtllmGenGemmRunnerOptions const& options_)
|
|
: mOptions(options_)
|
|
{
|
|
// Select a GEMM kernel config to use
|
|
auto const gemm = GemmInterface();
|
|
auto const configs = gemm.getGemmConfigs();
|
|
|
|
mPassingConfigIndices.clear();
|
|
|
|
for (size_t i = 0; i < gemm.getNumGemmConfigs(); ++i)
|
|
{
|
|
auto const options = configs[i].mOptions;
|
|
|
|
// When we include low-latency kernels we can set transposeMmaOutput via constructor
|
|
if (options.mDtypeA == mOptions.eltType && options.mDtypeC == mOptions.outputType
|
|
&& options.mUseDeepSeekFp8 == mOptions.deepSeekFp8
|
|
&& options.mTransposeMmaOutput == mOptions.transposeMmaOutput)
|
|
{
|
|
mPassingConfigIndices.push_back(i);
|
|
}
|
|
}
|
|
|
|
TLLM_CHECK_WITH_INFO(mPassingConfigIndices.size() != 0, "No kernel found for the given output type");
|
|
}
|
|
|
|
size_t TrtllmGenGemmRunner::getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k)
|
|
{
|
|
GemmData gemmData;
|
|
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
|
|
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
|
|
gemmData.mProblemDimensions.mK = k;
|
|
gemmData.mProblemDimensions.mRank = 0;
|
|
gemmData.mProblemDimensions.mWorldSize = 1;
|
|
|
|
selectGemmConfig(m, n, k);
|
|
|
|
auto gemm = GemmInterface();
|
|
auto const configs = gemm.getGemmConfigs();
|
|
TLLM_CHECK_WITH_INFO(
|
|
mSelectedConfigIndex.has_value(), "No valid kernel found for given param config and problem size");
|
|
auto const config = configs[mSelectedConfigIndex.value()];
|
|
|
|
return gemm.getWorkspaceSizeInBytes(config, gemmData);
|
|
}
|
|
|
|
void TrtllmGenGemmRunner::run(int32_t m, int32_t n, int32_t k, void const* a, float const* aScale, void const* b,
|
|
float const* bScale, void* c, float* cScale, float* cScalePtr, void* workspace, CUstream stream, int device)
|
|
{
|
|
auto gemm = GemmInterface();
|
|
|
|
GemmData gemmData;
|
|
|
|
auto const configs = gemm.getGemmConfigs();
|
|
TLLM_CHECK_WITH_INFO(
|
|
mSelectedConfigIndex.has_value(), "No valid kernel found for given param config and problem size");
|
|
auto const& config = configs[mSelectedConfigIndex.value()];
|
|
|
|
// Dims
|
|
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
|
|
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
|
|
gemmData.mProblemDimensions.mK = k;
|
|
gemmData.mProblemDimensions.mRank = 0;
|
|
gemmData.mProblemDimensions.mWorldSize = 1;
|
|
|
|
// Inputs
|
|
gemmData.mInputBuffers.mPtrA = mOptions.transposeMmaOutput ? b : a;
|
|
gemmData.mInputBuffers.mPtrSfA = mOptions.transposeMmaOutput ? bScale : aScale;
|
|
gemmData.mInputBuffers.mPtrB = mOptions.transposeMmaOutput ? a : b;
|
|
gemmData.mInputBuffers.mPtrSfB = mOptions.transposeMmaOutput ? aScale : bScale;
|
|
gemmData.mInputBuffers.mPtrScaleC = cScale;
|
|
|
|
// Outputs
|
|
gemmData.mOutputBuffers.mPtrC = c;
|
|
gemmData.mOutputBuffers.mPtrSfC = cScalePtr;
|
|
|
|
int32_t multiProcessorCount;
|
|
cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, device);
|
|
|
|
// FIXME once we start using all-reduce in the epilogue of the gemm this can be moved elsewhere
|
|
gemm.runInitBeforeWorldSync(config, gemmData, static_cast<void*>(stream));
|
|
|
|
auto const err = gemm.run(
|
|
config, workspace, gemmData, static_cast<void*>(stream), multiProcessorCount, globalTrtllmGenGemmModuleCache);
|
|
|
|
TLLM_CHECK_WITH_INFO(err == 0, "Error occurred when running GEMM!");
|
|
}
|
|
|
|
void TrtllmGenGemmRunner::run(int32_t m, int32_t n, int32_t k, void const* a, void const* b, void* c, float* cScale,
|
|
void* workspace, CUstream stream, int device)
|
|
{
|
|
run(m, n, k, a, /*aScale*/ nullptr, b, /*bScale*/ nullptr, c, cScale, /*cScalePtr*/ nullptr, workspace, stream,
|
|
device);
|
|
}
|
|
|
|
void TrtllmGenGemmRunner::selectGemmConfig(int32_t m, int32_t n, int32_t k)
|
|
{
|
|
auto const gemm = GemmInterface();
|
|
auto const configs = gemm.getGemmConfigs();
|
|
|
|
GemmData gemmData;
|
|
// Dims
|
|
gemmData.mProblemDimensions.mM = mOptions.transposeMmaOutput ? n : m;
|
|
gemmData.mProblemDimensions.mN = mOptions.transposeMmaOutput ? m : n;
|
|
gemmData.mProblemDimensions.mK = k;
|
|
gemmData.mProblemDimensions.mRank = 0;
|
|
gemmData.mProblemDimensions.mWorldSize = 1;
|
|
|
|
std::vector<int32_t> sortedIndices = mPassingConfigIndices;
|
|
std::sort(sortedIndices.begin(), sortedIndices.end(),
|
|
[&configs](int32_t idx0, int32_t idx1)
|
|
{
|
|
auto const& optionsA = configs[idx0].mOptions;
|
|
auto const& optionsB = configs[idx1].mOptions;
|
|
|
|
// Sort by tileK sizes first
|
|
if (optionsA.mTileK != optionsB.mTileK)
|
|
{
|
|
return optionsA.mTileK > optionsB.mTileK;
|
|
}
|
|
|
|
// Then by unroll loop 2x for mma
|
|
if (optionsA.mUseUnrollLoop2xForMma != optionsB.mUseUnrollLoop2xForMma)
|
|
{
|
|
return optionsA.mUseUnrollLoop2xForMma;
|
|
}
|
|
|
|
// Then by splitK sizes
|
|
if (optionsA.mNumSlicesForSplitK != optionsB.mNumSlicesForSplitK)
|
|
{
|
|
return optionsA.mNumSlicesForSplitK > optionsB.mNumSlicesForSplitK;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
|
|
for (auto const& configIndex : sortedIndices)
|
|
{
|
|
auto const& config = configs[configIndex];
|
|
// FIXME: We select the first valid config,
|
|
// but must instead choose the "best" config based on some heruistics.
|
|
auto isValidConfig = gemm.isValidConfig(config, gemmData);
|
|
if (isValidConfig)
|
|
{
|
|
mSelectedConfigIndex = configIndex;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|