TensorRT-LLMs/examples/bert/run_remove_input_padding.py
2024-08-29 17:25:07 +08:00

154 lines
5.9 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import random
from typing import List
# isort: off
import torch
import tensorrt as trt
# isort: on
import tensorrt_llm
from tensorrt_llm import logger
from tensorrt_llm.runtime import Session, TensorInfo
from build import get_engine_name # isort:skip
def trt_dtype_to_torch(dtype):
if dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
elif dtype == trt.int32:
return torch.int32
else:
raise TypeError("%s is not supported" % dtype)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--log_level", type=str, default="info")
parser.add_argument("--engine_dir", type=str, default='bert_outputs')
return parser.parse_args()
def process_input(input_ids_list: List[torch.Tensor],
token_type_ids_list: List[torch.Tensor]):
input_lengths = []
position_ids_list = []
max_input_length = 0
for i, input_ids in enumerate(input_ids_list):
input_len = len(input_ids)
assert input_len == len(token_type_ids_list[i]), f"sample {i}: len(input_ids)={len(input_ids)}, " \
f"len(token_type_ids)={len(token_type_ids_list[i])}, not equal"
input_lengths.append(input_len)
position_ids_list.append(torch.arange(0, input_len, dtype=torch.int32))
max_input_length = max(max_input_length, input_len)
# [num_tokens]
input_ids = torch.concat(input_ids_list).int().cuda()
token_type_ids = torch.concat(token_type_ids_list).int().cuda()
position_ids = torch.concat(position_ids_list).int().cuda()
input_lengths = torch.tensor(input_lengths).int().cuda() # [batch_size]
max_input_length = torch.empty((max_input_length, )).int().cuda()
return input_ids, input_lengths, token_type_ids, position_ids, max_input_length
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
model_name = config['builder_config']['name']
runtime_rank = tensorrt_llm.mpi_rank() if world_size > 1 else 0
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
serialize_path = get_engine_name(model_name, dtype, world_size,
runtime_rank)
serialize_path = os.path.join(args.engine_dir, serialize_path)
stream = torch.cuda.current_stream().cuda_stream
logger.info(f'Loading engine from {serialize_path}')
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
logger.info(f'Creating session from engine')
session = Session.from_serialized_engine(engine_buffer)
remove_input_padding = config["plugin_config"]["remove_input_padding"]
assert remove_input_padding, "This is a demo for BERT models with remove_input_padding enabled"
for i in range(3):
batch_size = (i + 1) * 4
# use list of tensor to represent unpadded samples
input_ids = []
token_type_ids = []
for _ in range(batch_size):
seq_len = random.randint(64, 128)
input_ids.append(torch.randint(100, size=(seq_len, )).int().cuda())
token_type_ids.append(
torch.randint(0, 1, size=(seq_len, )).int().cuda())
input_ids, input_lengths, token_type_ids, position_ids, max_input_length = \
process_input(input_ids, token_type_ids)
inputs = {
"input_ids": input_ids,
"input_lengths": input_lengths,
"token_type_ids": token_type_ids,
"position_ids": position_ids,
"max_input_length": max_input_length
}
output_info = session.infer_shapes([
TensorInfo("input_ids", trt.DataType.INT32, input_ids.shape),
TensorInfo("input_lengths", trt.DataType.INT32,
input_lengths.shape),
TensorInfo("token_type_ids", trt.DataType.INT32,
token_type_ids.shape),
TensorInfo("position_ids", trt.DataType.INT32, position_ids.shape),
TensorInfo("max_input_length", trt.DataType.INT32,
max_input_length.shape)
])
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
output_name = "logits"
assert output_name in outputs, f'{output_name} not found in outputs, check if build.py set output name correctly'
ok = session.run(inputs, outputs, stream)
assert ok, "Runtime execution failed"
torch.cuda.synchronize()
res = outputs[output_name]
print(res)