TensorRT-LLMs/tests/llmapi/apps/_test_openai_chat.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

265 lines
8.4 KiB
Python

# Adapted from
# https://github.com/vllm-project/vllm/blob/aae6927be06dedbda39c6b0c30f6aa3242b84388/tests/entrypoints/openai/test_chat.py
import os
import sys
from typing import List
import numpy as np
import openai
import pytest
from openai_server import RemoteOpenAIServer
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from test_llm import get_model_path
@pytest.fixture(scope="module")
def model_name():
return "llama-models-v2/TinyLlama-1.1B-Chat-v1.0"
@pytest.fixture(scope="module")
def server(model_name: str):
model_path = get_model_path(model_name)
args = ["--max_beam_width", "4"]
with RemoteOpenAIServer(model_path, args) as remote_server:
yield remote_server
@pytest.fixture(scope="module")
def client(server: RemoteOpenAIServer):
return server.get_client()
@pytest.fixture(scope="module")
def async_client(server: RemoteOpenAIServer):
return server.get_async_client()
def test_single_chat_session(client: openai.OpenAI, model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
logprobs=True,
)
assert chat_completion.id is not None
assert len(chat_completion.choices) == 1
assert chat_completion.usage.completion_tokens == 10
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
# test logprobs
logprobs = chat_completion.choices[0].logprobs.content
assert len(logprobs) == 10
for logprob in logprobs:
assert logprob.token is not None
assert logprob.logprob is not None
assert logprob.bytes is not None
assert len(logprob.top_logprobs) == 0
# test multi-turn dialogue
messages.append({"role": "assistant", "content": message.content})
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
# test beam search
chat_completion = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
n=2,
temperature=0.0,
extra_body=dict(use_beam_search=True),
)
assert len(chat_completion.choices) == 2
assert chat_completion.choices[0].message.content != chat_completion.choices[
1].message.content, "beam search should be different"
@pytest.mark.asyncio(loop_scope="module")
async def test_chat_streaming(async_client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "you are a helpful assistant"
}, {
"role": "user",
"content": "what is 1+1?"
}]
# test single completion
chat_completion = await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
logprobs=True,
)
output = chat_completion.choices[0].message.content
logprobs = [
logprob_content.logprob
for logprob_content in chat_completion.choices[0].logprobs.content
]
# test streaming
stream = await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
logprobs=True,
stream=True,
)
str_chunks: List[str] = []
logprob_chunks: List[float] = []
# TODO{pengyunl}: add stop_reason test when supported
async for chunk in stream:
delta = chunk.choices[0].delta
if logprob_chunk := chunk.choices[0].logprobs:
assert len(logprob_chunk.content) == 1
assert len(logprob_chunk.content[0].top_logprobs) == 0
logprob_chunks.append(logprob_chunk.content[0].logprob)
if delta.role:
assert delta.role == "assistant"
if delta.content:
str_chunks.append(delta.content)
assert delta.content
assert "".join(str_chunks) == output
assert len(logprob_chunks) == len(logprobs)
logprobs, logprob_chunks = np.array(logprobs), np.array(logprob_chunks)
assert np.allclose(logprobs, logprob_chunks)
@pytest.mark.asyncio(loop_scope="module")
async def test_chat_completion_stream_options(async_client: openai.AsyncOpenAI,
model_name: str):
messages = [{
"role": "system",
"content": "You are a helpful assistant."
}, {
"role": "user",
"content": "What is the capital of France?"
}]
# Test stream=True, stream_options={"include_usage": False}
stream = await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
stream_options={"include_usage": False})
async for chunk in stream:
assert chunk.usage is None
# Test stream=True, stream_options={"include_usage": True,
# "continuous_usage_stats": False}}
stream = await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": False
})
async for chunk in stream:
if chunk.choices:
assert chunk.usage is None
else:
assert chunk.usage is not None
assert chunk.usage.prompt_tokens > 0
assert chunk.usage.completion_tokens > 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
assert chunk.choices == []
# Test stream=False, stream_options={"include_usage": None}
with pytest.raises(openai.BadRequestError):
await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": None})
# Test stream=False, stream_options={"include_usage": True}
with pytest.raises(openai.BadRequestError):
await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=False,
stream_options={"include_usage": True})
# Test stream=True, stream_options={"include_usage": True,
# "continuous_usage_stats": True}
stream = await async_client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
stream=True,
stream_options={
"include_usage": True,
"continuous_usage_stats": True
},
)
async for chunk in stream:
assert chunk.usage.prompt_tokens >= 0
assert chunk.usage.completion_tokens >= 0
assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens +
chunk.usage.completion_tokens)
def test_custom_role(client: openai.OpenAI, model_name: str):
# Not sure how the model handles custom roles so we just check that
# both string and complex message content are handled in the same way
resp1 = client.chat.completions.create(
model=model_name,
messages=[{
"role": "my-custom-role",
"content": "what is 1+1?",
}], # type: ignore
temperature=0,
seed=0)
resp2 = client.chat.completions.create(
model=model_name,
messages=[{
"role": "my-custom-role",
"content": [{
"type": "text",
"text": "what is 1+1?"
}]
}], # type: ignore
temperature=0,
seed=0)
content1 = resp1.choices[0].message.content
content2 = resp2.choices[0].message.content
assert content1 == content2