TensorRT-LLMs/tests/model/eagle/test_decode_draft_tokens_plugin.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

409 lines
16 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import tensorrt as trt
import torch
from parameterized import parameterized
import tensorrt_llm
import tensorrt_llm.models.eagle
from tensorrt_llm import Tensor
from tensorrt_llm.models.eagle.model import TreeParams
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
from utils.util import create_session, run_session, unittest_name_func
class TestEagleDecodeDraftTokensPlugin(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
def load_test_cases():
test_cases = []
################# CASE 0 ##########################
# BS=1, topK sampling
# 1 input logits, from node "0"
# layerId = 0
# logits_data_type = float32
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 0, 1, -100, -100, 2, -100], # Top3 id = 6, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 0
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
################# CASE 1 ##########################
# BS=2, topK sampling
# 2 input logits, from req0 node "0" and req1 node "0"
# layerId = 0
# logits_data_type = float32
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 0, 1, -100, -100, -100, -100], # Top2 id = 3, 2
[-100, 3, -100, 2, -100, 1, -100, -100], # Top3 id = 1, 3, 5
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, 4, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 5, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1], [-1, -1, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0, 0],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 0
ref_return_draft_token_ids = torch.tensor(
[[3, 2, -1, -1], [1, 3, 5, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[2, 3], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
################# CASE 2 ##########################
# BS=1, topK sampling
# 2 input loigts, from req0 node "1" and "3"
# layerId = 1
# logits_data_type = float32
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, -100, 1, -100, -100, -100, -100], # Top1 id = 3
[-100, 1, -100, -100, -100, -100, -100, -100], # Top1 id = 1
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([3], dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 1
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, 3, 1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[5], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
################# CASE 3 ##########################
# BS=2, topK sampling
# 1 input loigts, from req1, node "3"
# layerId = 1
# logits_data_type = float32
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, -100, -100, -100, 1, -100, -100], # Top1 id = 5
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, -1, -1], [0, 2, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1]],
[[0, 1, -1, -1], [0, 2, -1, -1], [0, 3, 4, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 5, 4]
input_draft_token_ids = torch.tensor(
[[2, 1, -1, -1], [1, 2, 3, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([2, 3],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 1
ref_return_draft_token_ids = torch.tensor(
[[2, 1, -1, -1], [1, 2, 3, 5]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[2, 4], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
################# CASE 4 ##########################
# BS=2, topK sampling
# 2 input logits, from req0 node "4" and req1 node "4"
# layerId = 2
# logits_data_type = float32
logits_data_type = torch.float32
logits = torch.tensor(
[
[-100, -100, 0, 1, -100, -100, -100, -100], # Top2 id = 3, 2
[-100, -100, -100, -100, 0, 1, -100, -100], # Top2 id = 5, 4
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0, 0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]],
[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [2, 8, 4]
input_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, -1, -1], [1, 2, 3, 4, 5, -1, -1]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([5, 5],
dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 2
ref_return_draft_token_ids = torch.tensor(
[[1, 2, 3, 4, 5, 3, 2], [1, 2, 3, 4, 5, 5, 4]],
dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[7, 7], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
################# CASE 5 ##########################
# BS=1, topK sampling
# 1 input logits, from req0 node "0"
# layerId = 0
# logits_data_type = float16
logits_data_type = torch.float16
logits = torch.tensor(
[
[-100, -100, 0, 1, -100, -100, 2, -100], # Top3 id = 6, 3, 2
],
dtype=logits_data_type,
device="cuda") # shape: [num_tokens, vocab_size_padded]
rand_sample = torch.tensor([0], dtype=torch.float32,
device="cuda") # shape: [num_tokens]
paths = torch.tensor(
[[[0, 1, 4, 6], [0, 1, 4, 7], [0, 2, -1, -1], [0, 3, 5, -1],
[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1],
[-1, -1, -1, -1]]],
dtype=torch.int32,
device="cuda"
) # shape: [batch_size, max_decoding_tokens, max_path_len] -> [1, 8, 4]
input_draft_token_ids = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
input_draft_lens = torch.tensor([0], dtype=torch.int32,
device="cuda") # shape: [batch_size]
topKSampling = True
layerId = 0
ref_return_draft_token_ids = torch.tensor(
[[6, 3, 2, -1, -1, -1, -1]], dtype=torch.int32,
device="cuda") # shape: [batch_size, max_decoding_draft_tokens]
ref_return_draft_len = torch.tensor(
[3], dtype=torch.int32, device="cuda") # shape: [batch_size]
test_cases += [[
logits, rand_sample, paths, input_draft_token_ids, input_draft_lens,
topKSampling, layerId, ref_return_draft_token_ids,
ref_return_draft_len
]]
return test_cases
@parameterized.expand(load_test_cases, name_func=unittest_name_func)
def test_sample_draft_tokens_plugin(self, logits, rand_sample, paths,
input_draft_token_ids, input_draft_lens,
topKSampling, layerId,
ref_return_draft_token_ids,
ref_return_draft_len):
# test data
torch.get_default_device()
torch.set_default_device("cuda")
# construct trt network
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
logits_t = Tensor(name='logits',
dtype=tensorrt_llm.torch_dtype_to_trt(
logits.dtype),
shape=logits.shape)
rand_sample_t = Tensor(name='rand_sample',
dtype=trt.float32,
shape=rand_sample.shape)
paths_t = Tensor(name='paths', dtype=trt.int32, shape=paths.shape)
input_draft_token_ids_t = Tensor(name='input_draft_token_ids',
dtype=trt.int32,
shape=input_draft_token_ids.shape)
input_draft_lens_t = Tensor(name='input_draft_lens',
dtype=trt.int32,
shape=input_draft_lens.shape)
output = tensorrt_llm.models.eagle.model.eagle_draft_decoder_plugin(
layer_idx=layerId,
top_k_sampling=topKSampling,
logits=logits_t,
rand_sample=rand_sample_t,
tree_params=TreeParams(paths=paths_t),
input_draft_token_ids=input_draft_token_ids_t,
input_draft_lens=input_draft_lens_t)
output_draft_token_ids, output_draft_lens = output
output_draft_token_ids.mark_output('output_draft_token_ids')
output_draft_lens.mark_output('output_draft_lens')
# trt run
session = create_session(builder, network, precision='float32')
inputs = {
"logits": logits,
"rand_sample": rand_sample,
"paths": paths,
"input_draft_token_ids": input_draft_token_ids,
"input_draft_lens": input_draft_lens
}
outputs = run_session(session, inputs)
output_draft_token_ids = outputs['output_draft_token_ids']
output_draft_lens = outputs['output_draft_lens']
# Check output
batch_size = paths.shape[0]
for i in range(batch_size):
# Check output length
self.assertEqual(ref_return_draft_len[i], output_draft_lens[i])
# Check output token
for j in range(output_draft_lens[i]):
self.assertEqual(ref_return_draft_token_ids[i][j],
output_draft_token_ids[i][j])
if __name__ == "__main__":
unittest.main()