TensorRT-LLMs/tests/quantization/test_qserve_gemm.py
石晓伟 8f91cff22e
TensorRT-LLM Release 0.15.0 (#2529)
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 13:44:56 +08:00

308 lines
12 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import _utils
import numpy as np
import tensorrt as trt
import torch
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
from polygraphy.logger import G_LOGGER
from tensorrt_llm.quantization.quantize import (qserve_pack_reorder_per_channel,
qserve_pack_reorder_per_group)
G_LOGGER.severity = 0
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm.quantization.functional import (qserve_gemm_per_channel,
qserve_gemm_per_group)
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_pre_ampere
class TestQServeGemm(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def _case_qserve_gemm_per_group(self,
m,
n,
k,
group_size=128,
seed=123456,
dtype="float16"):
torch.manual_seed(seed)
# Initialize qact (int8 range: -128 to 127)
qact = torch.randint(-128, 128, (m, k), dtype=torch.int8)
# Initialize act_scales (float16)
act_scales = torch.rand(
m, 1, dtype=torch.float16) * 0.1 # small positive values
# Initialize qweight (int4 range: 0 to 15, as per qserve_quantize_weight)
qweight = torch.randint(0, 16, (n, k), dtype=torch.int8)
# Initialize s1_scales (float16)
s1_scales = torch.rand(n, 1, dtype=torch.float16) * 0.1
# Initialize s2_scales (int)
s2_scales = torch.randint(1, 16, (n, k // group_size), dtype=torch.int8)
# Initialize s2_zeros (int)
s2_zeros = torch.randint(0, 16, (n, k // group_size), dtype=torch.int8)
# Ground truth matmul
ref = _utils.gt_qserve_gemm_per_group(qact, act_scales, qweight,
s1_scales, s2_scales,
s2_zeros).cpu().numpy()
# Prepare data for QServe gemm kernel
qweight, s1_scales, s2_scales, s2_zeros = qserve_pack_reorder_per_group(
qweight, s1_scales, s2_scales, s2_zeros, group_size)
# Create builder
builder = tensorrt_llm.Builder()
builder.strongly_typed = False # Test need to run in weekly typed mode
# Create empty network
network = builder.create_network()
# Allow SQ plugin of dtype type
network.plugin_config.set_qserve_plugins("float16")
with tensorrt_llm.net_guard(network):
qact_trt = Tensor(
name='qact',
shape=qact.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
act_scales_trt = Tensor(
name='act_scales',
shape=act_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
qweight_trt = Tensor(
name='qweight',
shape=qweight.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
s1_scales_trt = Tensor(
name='s1_scales',
shape=s1_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
s2_scales_trt = Tensor(
name='s2_scales',
shape=s2_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
s2_zeros_trt = Tensor(
name='s2_zeros',
shape=s2_zeros.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
output = qserve_gemm_per_group(qact_trt, act_scales_trt,
qweight_trt, s1_scales_trt,
s2_scales_trt, s2_zeros_trt)
output.mark_output('output', dtype)
engine = EngineFromNetwork(
(builder.trt_builder, network.trt_network),
config=CreateConfig(int8=True,
fp16=True,
memory_pool_limits={
trt.MemoryPoolType.WORKSPACE:
32 * 1024 * 1024
}))
# Infer engine
with TrtRunner(engine) as runner:
outputs = runner.infer(
feed_dict={
'qact': qact.numpy(),
'act_scales': act_scales.numpy(),
'qweight': qweight.numpy(),
's1_scales': s1_scales.numpy(),
's2_scales': s2_scales.numpy(),
's2_zeros': s2_zeros.numpy()
})
output = outputs['output']
# Allow difference by one code point.
self.assertTrue(np.allclose(output, ref, rtol=0, atol=np.spacing(ref)))
def _case_qserve_gemm_per_channel(self,
m,
n,
k,
seed=123456,
dtype="float16"):
torch.manual_seed(seed)
# Initialize qact (int8 range: -128 to 127)
qact = torch.randint(-128, 128, (m, k), dtype=torch.int8)
# Initialize act_scales (float16)
act_scales = torch.rand(
m, 1, dtype=torch.float16) * 0.1 # small positive values
# Compute act_sums
act_sums = torch.sum(qact.float() * act_scales.float(),
dim=1,
keepdim=True).half()
# Initialize qweight (int4 range: 0 to 15, as per qserve_quantize_weight)
qweight = torch.randint(0, 16, (n, k), dtype=torch.int8)
# Initialize s1_scales (float16)
s1_scales = torch.rand(n, 1, dtype=torch.float16) * 0.1
# Initialize s1_szeros (float16)
s1_zeros = torch.randint(1, 16, (n, 1)).half()
# Ground truth matmul
ref = _utils.gt_qserve_gemm_per_channel(qact, act_scales, act_sums,
qweight, s1_scales,
s1_zeros).cpu().numpy()
# Prepare data for QServe gemm kernel
qweight, s1_scales, s1_szeros = qserve_pack_reorder_per_channel(
qweight, s1_scales, s1_zeros)
# Create builder
builder = tensorrt_llm.Builder()
builder.strongly_typed = False # Test need to run in weekly typed mode
# Create empty network
network = builder.create_network()
# Allow SQ plugin of dtype type
network.plugin_config.set_qserve_plugins("float16")
with tensorrt_llm.net_guard(network):
qact_trt = Tensor(
name='qact',
shape=qact.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
act_scales_trt = Tensor(
name='act_scales',
shape=act_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
act_sums_trt = Tensor(
name='act_sums',
shape=act_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
qweight_trt = Tensor(
name='qweight',
shape=qweight.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("int8"))
s1_scales_trt = Tensor(
name='s1_scales',
shape=s1_scales.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
s1_szeros_trt = Tensor(
name='s1_szeros',
shape=s1_szeros.shape,
dtype=tensorrt_llm._utils.str_dtype_to_trt("float16"))
output = qserve_gemm_per_channel(qact_trt, act_scales_trt,
act_sums_trt, qweight_trt,
s1_scales_trt, s1_szeros_trt)
output.mark_output('output', dtype)
engine = EngineFromNetwork(
(builder.trt_builder, network.trt_network),
config=CreateConfig(int8=True,
fp16=True,
memory_pool_limits={
trt.MemoryPoolType.WORKSPACE:
32 * 1024 * 1024
}))
# Infer engine
with TrtRunner(engine) as runner:
outputs = runner.infer(
feed_dict={
'qact': qact.numpy(),
'act_scales': act_scales.numpy(),
'act_sums': act_sums.numpy(),
'qweight': qweight.numpy(),
's1_scales': s1_scales.numpy(),
's1_szeros': s1_szeros.numpy(),
})
output = outputs['output']
# Allow some difference.
self.assertTrue(np.allclose(output, ref, rtol=1e-2, atol=0.25))
@skip_pre_ampere
def test_qserve_gemm_per_group(self, dtype='float16'):
bs = 2
inseq = 16
hidden_size = 768
# qkv_gemm
self._case_qserve_gemm_per_group(bs * inseq,
3 * hidden_size,
hidden_size,
dtype=dtype)
# mlp_gemm_1
self._case_qserve_gemm_per_group(bs * inseq,
4 * hidden_size,
hidden_size,
dtype=dtype)
@skip_pre_ampere
def test_qserve_gemm_per_channel(self, dtype='float16'):
bs = 2
inseq = 16
hidden_size = 768
# qkv_gemm
self._case_qserve_gemm_per_channel(bs * inseq,
3 * hidden_size,
hidden_size,
dtype=dtype)
# mlp_gemm_1
self._case_qserve_gemm_per_channel(bs * inseq,
4 * hidden_size,
hidden_size,
dtype=dtype)
def test_qserve_gemm_per_group_no_plugin(self):
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
network = builder.create_network()
with tensorrt_llm.net_guard(network):
# Gemm ootb should fail
with self.assertRaisesRegex(
TypeError,
"QServe Quant GEMM is only supported with plugin"):
qserve_gemm_per_group(None, None, None, None, None, None)
def test_qserve_gemm_per_channel_no_plugin(self):
# Create builder
builder = tensorrt_llm.Builder()
# Create empty network
network = builder.create_network()
with tensorrt_llm.net_guard(network):
# Gemm ootb should fail
with self.assertRaisesRegex(
TypeError,
"QServe Quant GEMM is only supported with plugin"):
qserve_gemm_per_channel(None, None, None, None, None, None)
if __name__ == '__main__':
unittest.main()