TensorRT-LLMs/examples/multimodal/run.py
brb-nv 44090a5388
Add support for Phi-4-MM (#3296)
Signed-off-by: Balaram Buddharaju <169953907+brb-nv@users.noreply.github.com>
2025-04-14 14:24:10 +08:00

129 lines
6.1 KiB
Python

import argparse
import os
from utils import add_common_args, compute_str_match_rate
import tensorrt_llm
import tensorrt_llm.profiler as profiler
from tensorrt_llm import logger
from tensorrt_llm.runtime import MultimodalModelRunner
def print_result(model, input_text, output_text, args):
logger.info("---------------------------------------------------------")
if model.model_type != 'nougat':
logger.info(f"\n[Q] {input_text}")
for i in range(len(output_text)):
logger.info(f"\n[A]: {output_text[i]}")
if args.num_beams == 1:
output_ids = model.tokenizer(output_text[0][0],
add_special_tokens=False)['input_ids']
logger.info(f"Generated {len(output_ids)} tokens")
if args.check_accuracy:
if model.model_type != 'nougat':
if model.model_type == "vila":
for i in range(len(args.image_path.split(args.path_sep))):
if i % 2 == 0:
assert output_text[i][0].lower(
) == "the image captures a bustling city intersection teeming with life. from the perspective of a car's dashboard camera, we see"
else:
assert output_text[i][0].lower(
) == "the image captures the iconic merlion statue in singapore, a renowned worldwide landmark. the merlion, a mythical"
elif model.model_type == "llava":
for i in range(len(args.image_path.split(args.path_sep))):
assert output_text[i][0].lower() == 'singapore'
elif model.model_type == 'fuyu':
assert output_text[0][0].lower() == '4'
elif model.model_type == "pix2struct":
assert "characteristic | cat food, day | cat food, wet | cat treats" in output_text[
0][0].lower()
elif model.model_type in [
'blip2', 'neva', 'phi-3-vision', 'llava_next',
'phi-4-multimodal'
]:
assert 'singapore' in output_text[0][0].lower()
elif model.model_type == 'video-neva':
assert 'robot' in output_text[0][0].lower()
elif model.model_type == 'kosmos-2':
assert 'snowman' in output_text[0][0].lower()
elif model.model_type == "mllama":
if "If I had to write a haiku for this one" in input_text:
ref_1 = ", it would be:.\\nPeter Rabbit is a rabbit.\\nHe lives in a cozy little house.\\nHe's a very good rabbit.\\"
ref_2 = "Here is a haiku for the image:\n\n"
elif "Answer:" in input_text:
ref_1 = "2,173. <OCR/> A 1 2 3 4 5 6 Date Income 2005-12-17"
ref_2 = "Answer: 2,173. <OCR/> 1 2 3 4 5 6 Date Income 2005-12-17"
elif "The key to life is" in input_text:
ref_1 = "to find your passion and pursue it with all your heart. For me, that passion is photography. I love capturing the beauty of the world around me"
ref_2 = "not to be found in the external world,"
output = output_text[0][0]
match_rate = max(compute_str_match_rate(ref_1, output),
compute_str_match_rate(ref_2, output))
logger.info(f"match rate: {match_rate}")
assert match_rate >= 50, \
f"expected results: '{ref_1}' or '{ref_2}', generated results: '{output}'"
elif model.model_type == 'llava_onevision':
if args.video_path is None:
assert 'singapore' in output_text[0][0].lower()
else:
assert 'the video is funny because the child\'s actions are' in output_text[
0][0].lower()
elif model.model_type == "qwen2_vl":
assert 'dog' in output_text[0][0].lower()
else:
assert output_text[0][0].lower() == 'singapore'
if args.run_profiling:
msec_per_batch = lambda name: 1000 * profiler.elapsed_time_in_sec(
name) / args.profiling_iterations
logger.info('Latencies per batch (msec)')
logger.info('e2e generation: %.1f' % (msec_per_batch('Generate')))
logger.info(' ' * 2 + 'Preprocessing: %.1f' %
(msec_per_batch('Preprocess')))
logger.info(' ' * 4 + 'Vision encoder: %.1f' %
(msec_per_batch('Vision encoder')))
if profiler.elapsed_time_in_sec('Feature transform') is not None:
logger.info(' ' * 4 + 'Feature transform: %.1f' %
(msec_per_batch('Feature transform')))
logger.info(' ' * 2 + 'LLM generate: %.1f' % (msec_per_batch('LLM')))
logger.info(' ' * 2 + 'Tokenizer decode: %.1f' %
(msec_per_batch('Tokenizer decode')))
logger.info("---------------------------------------------------------")
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "false"
parser = argparse.ArgumentParser()
parser = add_common_args(parser)
args = parser.parse_args()
logger.set_level(args.log_level)
model = MultimodalModelRunner(args)
visual_data = model.load_test_data(args.image_path, args.video_path)
audio_data = model.load_test_audio(args.audio_path)
if args.run_profiling:
num_warmup_iters = 3 # Multiple iterations to load both vision and LLM engines into memory
for _ in range(num_warmup_iters):
input_text, output_text = model.run(args.input_text, visual_data,
audio_data, args.max_new_tokens)
profiler.reset()
num_iters = args.profiling_iterations if args.run_profiling else 1
for _ in range(num_iters):
input_text, output_text = model.run(args.input_text, visual_data,
audio_data, args.max_new_tokens)
runtime_rank = tensorrt_llm.mpi_rank()
if runtime_rank == 0:
print_result(model, input_text, output_text, args)
# TODO: raise error if VILA mode 1 with C++ runtime