TensorRT-LLMs/tensorrt_llm/layers/moe.py
tburt-nv 7a659885e3
chore: remove usernames from comments (#3291)
Signed-off-by: Tyler Burt <195370667+tburt-nv@users.noreply.github.com>
2025-04-05 13:44:28 +08:00

1543 lines
67 KiB
Python
Executable File

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from enum import IntEnum
from typing import List, Optional, Type, Union
import numpy as np
import tensorrt as trt
import torch
from tensorrt_llm._utils import (get_init_params, str_dtype_to_torch,
str_dtype_to_trt)
from tensorrt_llm.layers.lora import LoraParams
from .._common import default_net, default_trtnet
from .._utils import QuantModeWrapper, get_sm_version, int32_array
from ..functional import (AllReduceParams, SideStreamIDType, Tensor,
_add_plugin_info, _create_tensor, abs, allreduce,
cast, concat, constant, cuda_stream_sync, div, expand,
gather_nd, gt, is_gated_activation)
from ..functional import max as trt_max
from ..functional import (maximum, non_gated_version, nonzero, reduce_scatter,
repeat_interleave, scatter, scatter_nd, shape,
sigmoid, softmax, split, sub, sum, topk, unsqueeze,
where)
from ..mapping import Mapping
from ..module import Module, ModuleList
from ..parameter import Parameter
from ..plugin import TRT_LLM_PLUGIN_NAMESPACE
from ..quantization import GroupwiseQuantAlgo, QuantMode
from ..quantization.functional import (postprocess_weight_only,
preprocess_weights_for_mixed_gemm,
quantize)
from .linear import RowLinear
from .mlp import MLP, GatedMLP
activation_str_to_int_map = {
# [WARNING] Keep the below in sync with cpp/tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h
"gelu": 0,
"gelu_new": 0,
"relu": 1,
"silu": 2,
"swiglu": 3,
"geglu": 4,
"identity": 5,
}
class MoeGroupwiseQuantParams():
def __init__(self,
group_size=-1,
zero=False,
pre_quant_scale=False,
use_w4a8_awq=False,
act_scale_1=None,
weight_scale_1=None,
weight_zero_1=None,
alpha_1=None,
act_scale_2=None,
weight_scale_2=None,
weight_zero_2=None,
alpha_2=None) -> None:
self.group_size = group_size
self.quant_algo = zero * GroupwiseQuantAlgo.ZERO + pre_quant_scale * GroupwiseQuantAlgo.PRE_QUANT_SCALE + use_w4a8_awq * GroupwiseQuantAlgo.W4A8_ALPHA
self.quant_params = []
if group_size == -1:
return
assert weight_scale_1
assert weight_scale_2
self.quant_params += [weight_scale_1, weight_scale_2]
if pre_quant_scale:
assert act_scale_1
assert act_scale_2
self.quant_params += [act_scale_1, act_scale_2]
if zero:
assert weight_zero_1
assert weight_zero_2
self.quant_params += [weight_zero_1, weight_zero_2]
if use_w4a8_awq:
assert alpha_1
assert alpha_2
self.quant_params += [alpha_1, alpha_2]
@dataclass
class MoeConfig:
class ExpertScaleNormalizationMode(IntEnum):
NONE = 0
RENORMALIZE = 1
SPARSE_MIXER = 2
DEVICE_LIMITED = 3
DEVICE_LIMITED_RENORM = 4
num_experts: int = 0
shared_expert_intermediate_size: int = 0
top_k: int = 0
normalization_mode: ExpertScaleNormalizationMode = ExpertScaleNormalizationMode.RENORMALIZE
sparse_mixer_epsilon: float = 0.01
tp_mode: int = 0
device_limited_n_group: int = 0
device_limited_topk_group: int = 0
device_limited_routed_scaling_factor: float = 1.0
def validate(self) -> "MoeConfig":
if (self.num_experts == 0) != (self.top_k == 0):
raise ValueError(
"Both or neither MoeConfig's num_experts and top_k must be set to 0"
)
return self
def has_moe(self) -> bool:
return self.num_experts > 1
@classmethod
def from_dict(cls, config: dict):
return cls(**config)
def to_dict(self):
return asdict(self)
def _moe_plugin(moe_config,
hidden_states,
hidden_states_raw,
token_selected_experts,
token_final_scales,
expert_weights_1,
expert_weights_2,
expert_bias_1,
expert_bias_2,
expert_scale_1,
expert_scale_2,
expert_scale_3,
expert_scale_4,
expert_scale_5,
expert_scale_6,
groupwise_quant_params,
hidden_size,
ffn_hidden_size,
act_fn,
dtype,
weight_dtype,
output_dtype,
lora_params: LoraParams,
lora_max_low_rank,
quant_mode=QuantMode(0),
tp_size=1,
ep_size=1,
tp_rank=0,
ep_rank=0,
side_stream_id=SideStreamIDType.disable):
if isinstance(dtype, str):
dtype = str_dtype_to_trt(dtype)
if isinstance(weight_dtype, str):
weight_dtype = str_dtype_to_trt(weight_dtype)
if isinstance(output_dtype, str):
output_dtype = str_dtype_to_trt(output_dtype)
def from_parameter(x):
if isinstance(x, Parameter):
return x.value
return x
expert_weights_1 = from_parameter(expert_weights_1)
expert_weights_2 = from_parameter(expert_weights_2)
expert_bias_1 = from_parameter(expert_bias_1)
expert_bias_2 = from_parameter(expert_bias_2)
expert_scale_1 = from_parameter(expert_scale_1)
expert_scale_2 = from_parameter(expert_scale_2)
expert_scale_3 = from_parameter(expert_scale_3)
expert_scale_4 = from_parameter(expert_scale_4)
expert_scale_5 = from_parameter(expert_scale_5)
expert_scale_6 = from_parameter(expert_scale_6)
# Create the plugin with our required state
num_experts = moe_config.num_experts
p_remove_input_padding = trt.PluginField(
"remove_input_padding",
np.array(np.int32(default_net().plugin_config.remove_input_padding),
dtype=np.int32), trt.PluginFieldType.INT32)
# We pass the full number of experts (not divided by ep_size) even for EP mode
p_num_experts = trt.PluginField("number_of_experts",
np.array(num_experts, dtype=np.int32),
trt.PluginFieldType.INT32)
p_experts_per_token = trt.PluginField(
"experts_per_token", np.array(moe_config.top_k, dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_hidden_size = trt.PluginField(
"expert_hidden_size", np.array(hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_expert_inter_size = trt.PluginField(
"expert_inter_size", np.array(ffn_hidden_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_groupwise_quant_algo = trt.PluginField(
"groupwise_quant_algo",
np.array(groupwise_quant_params.quant_algo, dtype=np.int32),
trt.PluginFieldType.INT32)
p_group_size = trt.PluginField(
"group_size", np.array(groupwise_quant_params.group_size,
dtype=np.int32), trt.PluginFieldType.INT32)
p_activation_type = trt.PluginField(
"activation_type",
np.array(activation_str_to_int_map[act_fn], dtype=np.int32),
trt.PluginFieldType.INT32)
p_type_id = trt.PluginField("type_id", np.array([int(dtype)],
dtype=np.int32),
trt.PluginFieldType.INT32)
p_weight_type_id = trt.PluginField(
"weight_type_id", np.array([int(weight_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_output_type_id = trt.PluginField(
"output_type_id", np.array([int(output_dtype)], dtype=np.int32),
trt.PluginFieldType.INT32)
if isinstance(quant_mode, QuantModeWrapper):
# We only need to get one quant mode here for specific moe layer
quant_mode = quant_mode[0]
p_quant_mode = trt.PluginField("quant_mode",
np.array([int(quant_mode)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_final_scales = trt.PluginField(
"use_final_scales",
np.array([int(token_final_scales is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_use_bias = trt.PluginField(
"use_bias", np.array([int(expert_bias_1 is not None)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_size = trt.PluginField("tp_size", np.array(tp_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_tp_rank = trt.PluginField("tp_rank", np.array(tp_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_size = trt.PluginField("ep_size", np.array(ep_size, dtype=np.int32),
trt.PluginFieldType.INT32)
p_ep_rank = trt.PluginField("ep_rank", np.array(ep_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
p_force_determinism = trt.PluginField(
"force_determinism", np.array([int(False)], dtype=np.int32),
trt.PluginFieldType.INT32)
p_side_stream_id = trt.PluginField("side_stream_id",
np.array(side_stream_id, dtype=np.int32),
trt.PluginFieldType.INT32)
use_lora = default_net().plugin_config.lora_plugin is not None
p_use_lora = trt.PluginField("use_lora", np.array([int(use_lora)],
np.int32),
trt.PluginFieldType.INT32)
if use_lora:
p_lora_type_id = trt.PluginField(
"lora_type_id",
np.array([
int(str_dtype_to_trt(default_net().plugin_config.lora_plugin))
], np.int32), trt.PluginFieldType.INT32)
p_max_low_rank = trt.PluginField(
"max_low_rank", np.array(lora_max_low_rank, dtype=np.int32),
trt.PluginFieldType.INT32)
pfc_inputs = [
p_remove_input_padding, p_num_experts, p_experts_per_token,
p_expert_hidden_size, p_expert_inter_size, p_groupwise_quant_algo,
p_group_size, p_activation_type, p_type_id, p_weight_type_id,
p_output_type_id, p_quant_mode, p_use_bias, p_use_final_scales,
p_tp_size, p_tp_rank, p_ep_size, p_ep_rank, p_force_determinism,
p_side_stream_id, p_use_lora
]
if use_lora:
pfc_inputs += [p_lora_type_id, p_max_low_rank]
pfc = trt.PluginFieldCollection(pfc_inputs)
# Create the plugin with our constant inputs to the constructor
plugin_creator = trt.get_plugin_registry().get_plugin_creator(
'MixtureOfExperts', '1', TRT_LLM_PLUGIN_NAMESPACE)
assert plugin_creator is not None
moe_plugin = plugin_creator.create_plugin("mixture_of_experts", pfc)
# Instantiate the plugin with our specific inputs
plugin_inputs = [hidden_states, expert_weights_1, expert_weights_2]
plugin_inputs += [token_selected_experts]
# Add conditional inputs
# Final scales do a final rescale of the output of the experts
if token_final_scales is not None:
plugin_inputs += [token_final_scales]
# Expert biases
if expert_bias_1:
assert expert_bias_2
plugin_inputs += [expert_bias_1, expert_bias_2]
# Add conditional inputs
if (quant_mode.is_weight_only() and not quant_mode.has_per_group_scaling()):
assert expert_scale_1
assert expert_scale_2
plugin_inputs += [expert_scale_1, expert_scale_2]
elif quant_mode.has_fp8_qdq():
# FP8 always has scales 1-3
assert expert_scale_1
assert expert_scale_2
assert expert_scale_3
plugin_inputs += [expert_scale_1, expert_scale_2, expert_scale_3]
if expert_scale_4 is not None:
assert output_dtype == trt.fp8
plugin_inputs += [expert_scale_4]
# Lora needs an extra parameter to be able to dequant the input back to backbone type
if use_lora:
assert expert_scale_5
plugin_inputs += [expert_scale_5]
elif quant_mode.has_per_group_scaling():
plugin_inputs += groupwise_quant_params.quant_params
# Lora needs an extra parameter to be able to dequant the input back to backbone type
if use_lora:
assert expert_scale_5
plugin_inputs += [expert_scale_5]
elif quant_mode.has_nvfp4():
assert expert_scale_1
assert expert_scale_2
assert expert_scale_3
assert expert_scale_4
assert expert_scale_5
assert expert_scale_6
plugin_inputs += [
expert_scale_1, expert_scale_2, expert_scale_3, expert_scale_4,
expert_scale_5, expert_scale_6
]
# Lora parameters
if use_lora:
# Check if lora_params is not None
moe_h_4h_params = lora_params.get_runtime_params(0, "moe_h_to_4h")
if moe_h_4h_params is not None:
moe_h_4h_weight_ptrs = moe_h_4h_params.lora_weights_pointers
moe_h_4h_lora_ranks = moe_h_4h_params.lora_ranks
plugin_inputs += (moe_h_4h_weight_ptrs + moe_h_4h_lora_ranks)
moe_4h_h_params = lora_params.get_runtime_params(0, "moe_4h_to_h")
if moe_4h_h_params is not None:
moe_4h_h_weight_ptrs = moe_4h_h_params.lora_weights_pointers
moe_4h_h_lora_ranks = moe_4h_h_params.lora_ranks
plugin_inputs += (moe_4h_h_weight_ptrs + moe_4h_h_lora_ranks)
if is_gated_activation(act_fn):
moe_gate_params = lora_params.get_runtime_params(0, "moe_gate")
if moe_gate_params is not None:
moe_gate_weight_ptrs = moe_gate_params.lora_weights_pointers
moe_gate_lora_ranks = moe_gate_params.lora_ranks
plugin_inputs += (moe_gate_weight_ptrs + moe_gate_lora_ranks)
host_request_types = lora_params.host_request_types
plugin_inputs += [host_request_types]
if default_net().plugin_config.remove_input_padding:
plugin_inputs += [lora_params.host_context_lengths]
# A control flow tensor required to synchronize the side stream
if side_stream_id != SideStreamIDType.disable:
plugin_inputs += [hidden_states_raw]
# Pass the inputs to the plugin
plugin_inputs = [i.trt_tensor for i in plugin_inputs]
layer = default_trtnet().add_plugin_v2(plugin_inputs, moe_plugin)
_add_plugin_info(layer, plugin_creator, "mixture_of_experts", pfc)
if not default_net().strongly_typed:
for ii in range(layer.num_inputs):
if layer.get_input(ii).dtype == str_dtype_to_trt("int8"):
layer.get_input(ii).set_dynamic_range(-127, 127)
# Fetch the output tensor
output = _create_tensor(layer.get_output(0), layer)
# If the side stream is enabled, also return the synchronization tensor for the side stream
if side_stream_id != SideStreamIDType.disable:
output = (output, _create_tensor(layer.get_output(1), layer))
return output
def unpack_int32_into_int8(w_packed):
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
w_packed_int4x2.shape[1],
w_packed_int4x2.shape[2] * 2,
dtype=torch.int8)
w_unpacked[:, :, ::2] = w_packed_int4x2 % 16
w_unpacked[:, :, 1::2] = w_packed_int4x2 // 16
w_unpacked = w_unpacked.view(-1, 8)[:, [0, 4, 1, 5, 2, 6, 3, 7]].view(
w_unpacked.shape)
return w_unpacked.contiguous()
# This exists so that MOE can have the same name format as a regular MLP, just with different shaped weight tensors
class MOEWeightWrapper(Module):
def __init__(self, in_features: int, out_features: int,
experts_per_node: int, quant_mode: QuantMode,
groupwise_quant_algo: int, group_size: int,
dtype: Union[str,
trt.DataType], weight_dtype: Union[str,
trt.DataType],
has_bias: bool, wrapper_tllm_to_externel_key_dict: dict,
tp_size: int, tp_dim: int):
super().__init__()
self.quant_mode = quant_mode
self.groupwise_quant_algo = groupwise_quant_algo
self.group_size = group_size
self.expert_shape = (experts_per_node, out_features, in_features)
self.dtype = dtype
self.weight_dtype = weight_dtype
self.has_bias = has_bias
self.tllm_to_externel_key_dict = wrapper_tllm_to_externel_key_dict
self.tp_size = tp_size
self.tp_dim = 1 - tp_dim if quant_mode.has_per_group_scaling(
) else tp_dim
self.is_padded = False
if quant_mode.is_weight_only(
) and not quant_mode.has_per_group_scaling():
bytes_per_col_scale = 2 if quant_mode.is_int4_weight_only() else 1
# We use a different shape here because the quantized weights have their own layout
self.expert_shape = (experts_per_node, in_features,
out_features // bytes_per_col_scale)
self.per_channel_scale = Parameter(shape=(experts_per_node,
out_features),
dtype=dtype)
else:
self.register_parameter('per_channel_scale', None)
if quant_mode.has_nvfp4():
self.expert_shape = (experts_per_node, out_features, in_features)
weight_dtype = trt.fp4
if not quant_mode.has_per_group_scaling():
self.weight = Parameter(shape=self.expert_shape,
dtype=weight_dtype,
prefer_managed=True)
if has_bias:
self.bias = Parameter(shape=(experts_per_node, out_features),
dtype=dtype)
else:
self.register_parameter('bias', None)
self.scaling_vector_size = 16
if quant_mode.has_fp8_qdq():
self.activation_scaling_factor = Parameter(shape=(1, ),
dtype=trt.float32)
self.weights_scaling_factor = Parameter(shape=(experts_per_node, 1),
dtype=trt.float32)
elif quant_mode.has_nvfp4():
self.weights_block_scaling_factor_interleaved = Parameter(
shape=(experts_per_node, out_features,
in_features // self.scaling_vector_size),
dtype=trt.fp8)
self.weights_block_scaling_factor = Parameter(
shape=(experts_per_node, out_features,
in_features // self.scaling_vector_size),
dtype=trt.fp8)
self.activation_global_scaling_factor = Parameter(shape=(1, ),
dtype=trt.float32)
# alpha = 1.0 / (weight_global_scale * act_global_scale)
self.alpha = Parameter(shape=(experts_per_node, ),
dtype=trt.float32)
elif quant_mode.has_per_group_scaling():
self.weight = Parameter(shape=(experts_per_node, in_features,
out_features // 4),
dtype=dtype)
scale_shape = (experts_per_node, in_features // group_size,
out_features)
self.weights_scaling_factor = Parameter(shape=scale_shape,
dtype=dtype)
if groupwise_quant_algo & GroupwiseQuantAlgo.ZERO:
self.zero = Parameter(shape=scale_shape, dtype=dtype)
else:
self.register_parameter('zero', None)
if groupwise_quant_algo & GroupwiseQuantAlgo.PRE_QUANT_SCALE:
self.prequant_scaling_factor = Parameter(shape=(1, in_features),
dtype=dtype)
else:
self.register_parameter('prequant_scaling_factor', None)
if groupwise_quant_algo & GroupwiseQuantAlgo.W4A8_ALPHA:
self.alpha = Parameter(shape=(experts_per_node, 1),
dtype=trt.float32)
else:
self.register_parameter('alpha', None)
self.tllm_to_externel_key_dict.update(
{"weight": ["qweight", "qzeros", "scales"]})
else:
self.register_parameter('weights_scaling_factor', None)
self.register_parameter('weights_block_scaling_factor', None)
self.register_parameter('weights_block_scaling_factor_interleaved',
None)
self.register_parameter('activation_scaling_factor', None)
self.register_parameter('activation_global_scaling_factor', None)
self.register_parameter('alpha', None)
self.register_parameter('zero', None)
self.register_parameter('prequant_scaling_factor', None)
def postprocess(self, tllm_key, weights, **kwargs):
def stack_weights(tllm_key, weights):
if "fc" in tllm_key:
weights = torch.cat([
torch.stack(weights[:len(weights) // 2]),
torch.stack(weights[len(weights) // 2:])
],
dim=-2)
elif "proj" in tllm_key:
weights = torch.stack(weights)
return weights
def postprocess_awq(tllm_key, weights):
if not tllm_key.endswith("weight"):
return {}
weights = [weights[i::3] for i in range(3)]
for idx, w in enumerate(weights):
if "fc" in tllm_key:
weights[idx] = torch.cat([
torch.stack(w[:len(w) // 2]),
torch.stack(w[len(w) // 2:])
],
dim=-1)
elif "proj" in tllm_key:
weights[idx] = torch.stack(w)
qweight_int32, qzeros_int32, scales_fp16 = weights
qweight = unpack_int32_into_int8(qweight_int32) - 8
qweight -= (qweight >> 4) << 4
qweight = qweight.view(torch.uint8)
qweight = (qweight[:, :, 1::2] * 16 + qweight[:, :, ::2]).view(
torch.int8)
qweight = preprocess_weights_for_mixed_gemm(
qweight, torch.quint4x2,
torch.float16).view(str_dtype_to_torch(self.dtype))
# zeros = zeros * scales
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8) * scales_fp16
zeros_x_scales_fp16 = zeros_x_scales_fp16.to(
str_dtype_to_torch(self.dtype))
results = {
tllm_key: qweight,
tllm_key.replace("weight", "weights_scaling_factor"):
scales_fp16,
tllm_key.replace("weight", "zero"): zeros_x_scales_fp16,
}
return results
if self.quant_mode.has_per_group_scaling():
return postprocess_awq(tllm_key, weights)
elif tllm_key.endswith("weight"):
if isinstance(weights, torch.Tensor):
weights = [weights]
else:
if self.quant_mode.has_fp8_qdq():
experts_per_node = self.weights_scaling_factor.shape[0]
if 'fc' in tllm_key:
# Example weights:
# ['model.layers.0.block_sparse_moe.experts.0.w3.weight',
# 'model.layers.0.block_sparse_moe.experts.0.w3.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.7.w3.weight',
# 'model.layers.0.block_sparse_moe.experts.7.w3.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.0.w1.weight',
# 'model.layers.0.block_sparse_moe.experts.0.w1.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.7.w1.weight',
# 'model.layers.0.block_sparse_moe.experts.7.w1.weight_scale']
assert experts_per_node * 4 == len(weights)
def w3_weight_idx(expert_id):
return 2 * expert_id
def w3_weight_scale_idx(expert_id):
return 2 * expert_id + 1
def w1_weight_idx(expert_id):
return 2 * (expert_id + experts_per_node)
def w1_weight_scale_idx(expert_id):
return 2 * (expert_id + experts_per_node) + 1
weights_requantized = [None] * (2 * experts_per_node)
# Since w1/w3 share weight_scale by picking the max, we need to requantize weight
for i in range(experts_per_node):
w3_weight = weights[w3_weight_idx(i)].float()
w3_weight_scale = weights[w3_weight_scale_idx(
i)].float()
w1_weight = weights[w1_weight_idx(i)].float()
w1_weight_scale = weights[w1_weight_scale_idx(
i)].float()
max_weight_scale = max(w3_weight_scale,
w1_weight_scale)
weights_requantized[i] = (w3_weight *
w3_weight_scale /
max_weight_scale).to(
torch.float8_e4m3fn)
weights_requantized[i + experts_per_node] = (
w1_weight * w1_weight_scale /
max_weight_scale).to(torch.float8_e4m3fn)
weights = weights_requantized
else:
assert 'proj' in tllm_key, f"tllm_key is {tllm_key}, which does not contain fc or proj"
# Example weights:
# ['model.layers.0.block_sparse_moe.experts.0.w2.weight',
# 'model.layers.0.block_sparse_moe.experts.0.w2.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.7.w2.weight',
# 'model.layers.0.block_sparse_moe.experts.7.w2.weight_scale',
assert 2 * experts_per_node == len(weights)
def w2_weight_idx(expert_id):
return 2 * expert_id
# No need to requantize, simply skip weight_scale
weights = [
weights[w2_weight_idx(i)]
for i in range(experts_per_node)
]
weights = stack_weights(tllm_key, weights)
if not self.quant_mode.has_any_quant():
# When each rank holds single expert, weights will be a list
if isinstance(weights, list):
weights = stack_weights(tllm_key, weights)
weights = weights.to(str_dtype_to_torch(self.dtype))
# FP8 scaling factors
if tllm_key.endswith("activation_scaling_factor"):
# Use max input range.
weights = max(weights).float().reshape((1, ))
if tllm_key.endswith("weights_scaling_factor"):
if tllm_key.split('.')[-2] == 'fc':
# Example weights:
# ['model.layers.0.block_sparse_moe.experts.0.w3.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.7.w3.weight_scale',
# 'model.layers.0.block_sparse_moe.experts.0.w1.weight_scale',
# ...
# 'model.layers.0.block_sparse_moe.experts.7.w1.weight_scale']
experts_per_node = self.weights_scaling_factor.shape[0]
assert experts_per_node * 2 == len(weights)
def w3_weight_scale_idx(expert_id):
return expert_id
def w1_weight_scale_idx(expert_id):
return expert_id + experts_per_node
# w1 and w3 share the weight scale by picking the max
weights = [
max(weights[w3_weight_scale_idx(i)],
weights[w1_weight_scale_idx(i)])
for i in range(experts_per_node)
]
weights = stack_weights(tllm_key, weights)
# FP4 scaling factors
if tllm_key.endswith("weights_block_scaling_factor"):
weights = stack_weights(tllm_key, weights)
if tllm_key.endswith("weights_block_scaling_factor_interleaved"):
weights = stack_weights(tllm_key, weights)
weights = torch.ops.tensorrt_llm.nvfp4_block_scale_interleave(
weights.to(torch.float8_e4m3fn).view(
torch.uint8).cpu().contiguous()).reshape(
weights.shape).view(torch.float8_e4m3fn)
if tllm_key.endswith("activation_global_scaling_factor"):
# Use max input range.
weights = max(weights).float().reshape((1, ))
if tllm_key.endswith("alpha"):
# weights are: [e0_w3_weight_scale, e0_w3_input_scale, e1_w3_weight_scale, e1_w3_input_scale
# ..., e7_w3_weight_scale, e7_w3_input_scale, e0_w1_weight_scale, e0_w1_input_scale, ...]
weights_global_scale = weights[::2]
activation_global_scale = weights[1::2]
if 'fc' in tllm_key:
weights_global_scale = torch.stack(
weights_global_scale[:len(weights_global_scale) // 2])
else:
weights_global_scale = torch.stack(weights_global_scale)
weights = (weights_global_scale *
max(activation_global_scale).float()).reshape((-1, ))
# Weight only
if self.quant_mode.is_weight_only():
if "per_channel_scale" in tllm_key:
return {}
weights = weights.to(str_dtype_to_torch(self.dtype))
return postprocess_weight_only(
tllm_key, weights, torch.int8 if
self.quant_mode.is_int8_weight_only() else torch.quint4x2, self)
return weights
class MixtureOfExperts(Module):
def __init__(self,
moe_config: MoeConfig,
hidden_size: int,
ffn_hidden_size: int,
hidden_act: str,
mapping: Mapping = Mapping(),
bias: bool = True,
dtype=None,
tp_group: List[int] = None,
tp_size: int = 1,
quant_mode=QuantMode(0),
use_all_reduce=True,
pre_quant_scale=False,
zero=False,
use_w4a8_awq=False,
use_int8_weight=False,
group_size: int = -1,
static_routing=False):
super().__init__()
self.moe_config = moe_config
self.num_experts = moe_config.num_experts
self.top_k = moe_config.top_k
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.expert_inter_size = ffn_hidden_size
self.dtype = dtype
self.weight_dtype = dtype
self.tp_group = tp_group
self.tp_size = tp_size
self.mapping = mapping
self.quant_mode = quant_mode
self.bias = bias
self.use_all_reduce = use_all_reduce
self.zero = zero
self.pre_quant_scale = pre_quant_scale
self.use_w4a8_awq = use_w4a8_awq
self.use_int8_weight = use_int8_weight
self.group_size = group_size
if self.use_int8_weight:
raise NotImplementedError("INT8-GPTQ is not implemented for MoE.")
self.static_routing = static_routing
self.experts_per_node = self.num_experts
if self.mapping.has_moe_ep():
if self.num_experts % self.mapping.moe_ep_size != 0:
raise ValueError(
f"MixtureOfExperts - Number of experts {self.num_experts} is not a multiple of EP size {self.mapping.moe_ep_size}"
)
self.experts_per_node = self.experts_per_node // self.mapping.moe_ep_size
if self.mapping.has_moe_tp():
if self.ffn_hidden_size % self.mapping.moe_tp_size != 0:
raise ValueError(
f"MixtureOfExperts - FFN Hidden Size {self.ffn_hidden_size} is not a multiple of TP size {self.mapping.moe_tp_size}"
)
self.expert_inter_size = self.ffn_hidden_size // self.mapping.moe_tp_size
if quant_mode.has_fp8_rowwise():
raise ValueError(
"MixtureOfExperts - MOE Does not support FP8 rowwise quantize")
if quant_mode.has_fp8_qdq() and self.bias:
# TODO We will need to revisit this if we have a use case for it
raise ValueError(
f"MixtureOfExperts - Bias is not supported with FP8")
if quant_mode.is_weight_only():
self.weight_dtype = trt.int8
elif quant_mode.has_fp8_qdq():
self.weight_dtype = trt.fp8
rank_experts = self.mapping.ep_experts(self.num_experts)
self.wrapper_tllm_to_externel_key_dict = {
"mlp":
"block_sparse_moe",
"proj": [f"experts.{expert}.w2" for expert in rank_experts],
"fc": [f"experts.{expert}.w3" for expert in rank_experts] +
[f"experts.{expert}.w1" for expert in rank_experts]
}
if quant_mode.has_fp8_qdq():
self.wrapper_tllm_to_externel_key_dict.update({
"weight": [
"weight", "weight_scale"
], # We need weight_scale to do requantization for w1/w3 fusion
"weights_scaling_factor":
"weight_scale",
"activation_scaling_factor":
"input_scale"
})
if quant_mode.has_nvfp4():
self.wrapper_tllm_to_externel_key_dict.update({
"weights_block_scaling_factor_interleaved":
"weight_scale",
"weights_block_scaling_factor":
"weight_scale",
"activation_global_scaling_factor":
"input_scale",
"alpha": ["weight_scale_2", "input_scale"],
})
# Since output dimension is usually low (in the order of 10s), no TP at
# all is more efficient as no allreduce required in the end.
# Note that if we see models that have large number of experts, we may
# need to consider add TP back here.
# TODO: Arctic has large # experts, we may need to add TP back here.
if not self.static_routing:
self.router = RowLinear(
hidden_size,
self.num_experts,
bias=False,
dtype=
"float32", # Routing is sensitive since it conditions what experts are used
tp_group=None,
tp_size=1,
strict_dtype=True)
self.router.tllm_to_externel_key_dict = {
"mlp": "block_sparse_moe",
"router": "gate"
}
self.init_experts()
self.max_low_rank = None
def init_experts(self):
# Note we use horizontal fusion for gated activation to do the operation in one GEMM invocation
# The left matrix is a linear projection (no activation applied)
# The right matrix is the gating value (activation applied)
# The naming convention is the inverse of GatedMLP, but the same as `tensorrt_llm/functional.py`
fc_out_size = self.expert_inter_size * 2 if is_gated_activation(
self.hidden_act) else self.expert_inter_size
groupwise_quant_algo = self.zero * GroupwiseQuantAlgo.ZERO + self.pre_quant_scale * GroupwiseQuantAlgo.PRE_QUANT_SCALE + self.use_w4a8_awq * GroupwiseQuantAlgo.W4A8_ALPHA
self.fc = MOEWeightWrapper(self.hidden_size, fc_out_size,
self.experts_per_node, self.quant_mode,
groupwise_quant_algo, self.group_size,
self.dtype, self.weight_dtype, self.bias,
self.wrapper_tllm_to_externel_key_dict,
self.mapping.moe_tp_size, 0)
self.proj = MOEWeightWrapper(self.expert_inter_size, self.hidden_size,
self.experts_per_node, self.quant_mode,
groupwise_quant_algo, self.group_size,
self.dtype, self.weight_dtype, self.bias,
self.wrapper_tllm_to_externel_key_dict,
self.mapping.moe_tp_size, 1)
def default_routing(self, logits):
topk_values, topk_indices = topk(softmax(cast(logits, trt.float32),
dim=-1),
k=self.moe_config.top_k,
dim=-1)
return topk_indices, topk_values
def renormalize(self, logits):
# Get top-k experts and renormalize their scores
token_scores, token_selected_experts = topk(cast(logits, trt.float32),
k=self.moe_config.top_k,
dim=-1)
token_final_scales = softmax(token_scores, dim=-1)
return token_selected_experts, token_final_scales
def group_limited_greedy(self, logits):
n_group = self.moe_config.device_limited_n_group
scores = softmax(cast(logits, trt.float32), -1)
scores_shape = [shape(scores, i) for i in range(scores.ndim())]
group_scores = scores.view(
concat(scores_shape[:-1] +
[n_group, scores_shape[-1] // n_group])).max(dim=-1)
_, group_idx = topk(group_scores,
k=self.moe_config.device_limited_topk_group,
dim=-1)
group_mask = scatter(group_scores * 0, -1, group_idx,
cast(group_idx, group_scores.dtype) * 0 + 1)
score_mask = expand(
unsqueeze(group_mask, -1),
concat(scores_shape[:-1] + [n_group, scores_shape[-1] // n_group]),
).view(concat(scores_shape))
scores = scores * score_mask * \
self.moe_config.device_limited_routed_scaling_factor
return scores
def sparse_mixer(self, logits):
router_logits = cast(logits, trt.float32)
topk_values = []
topk_indices = []
assert self.top_k == 2, "Sparse mixer only supports top_k = 2"
def mask_and_softmax(router_logits):
# Get max of remaining values
max_values = trt_max(router_logits, dim=-1, keepdim=True)
# Calculate mask for epsilon condition
abs_values = abs(router_logits)
max_abs = maximum(abs_values, max_values)
diff = sub(max_values, router_logits)
ratio = div(diff, max_abs)
# Apply epsilon mask
eps_mask = gt(ratio, 2 * self.moe_config.sparse_mixer_epsilon)
router_logits = where(eps_mask, -float('inf'), router_logits)
curr_values, curr_indices = topk(softmax(router_logits),
k=1,
dim=-1)
return curr_indices, curr_values
curr_indices, curr_values = mask_and_softmax(router_logits)
topk_values.append(curr_values)
topk_indices.append(curr_indices)
# Mask the last selected expert to -inf
router_logits = scatter(router_logits, -1, curr_indices,
curr_values * 0 - float('inf'))
curr_indices, curr_values = mask_and_softmax(router_logits)
topk_values.append(curr_values)
topk_indices.append(curr_indices)
# Concatenate results
values = concat(topk_values, dim=1)
indices = concat(topk_indices, dim=1)
return indices, values
def forward(self,
hidden_states,
lora_layer_params=None,
all_reduce_params: Optional[AllReduceParams] = None,
last_local_layer_residual=None,
side_stream_id: Optional[SideStreamIDType] = SideStreamIDType.
disable,
static_routing_input: Optional[Tensor] = None):
moe_router_lora_params = None
if lora_layer_params is not None:
moe_router_lora_params = lora_layer_params.get_runtime_params(
0, "moe_router")
if not self.static_routing:
routing_input = cast(hidden_states, trt.float32)
routing = self.router(routing_input, moe_router_lora_params)
else:
routing = None
# token_selected_experts is shape (num_tokens, experts_per_token).
# It is a list of selected expert indices for each token
# token_final_scales is shape (num_tokens, experts_per_token). May be None
# It contains a final scaling/weighting factor applied to the output of each selected expert before summing the results
if self.static_routing:
token_selected_experts = static_routing_input
token_final_scales = None
elif self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED:
token_final_scales, token_selected_experts = topk(
self.group_limited_greedy(routing),
k=self.moe_config.top_k,
dim=-1)
elif self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM:
token_final_scales, token_selected_experts = topk(
self.group_limited_greedy(routing),
k=self.moe_config.top_k,
dim=-1)
token_final_scales /= sum(token_final_scales, dim=-1, keepdim=True)
elif self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE:
token_selected_experts, token_final_scales = self.renormalize(
routing)
elif self.moe_config.normalization_mode == MoeConfig.ExpertScaleNormalizationMode.SPARSE_MIXER:
token_selected_experts, token_final_scales = self.sparse_mixer(
routing)
else:
token_selected_experts, token_final_scales = self.default_routing(
routing)
output = self.forward_experts(hidden_states, token_selected_experts,
token_final_scales, lora_layer_params,
side_stream_id)
if side_stream_id != SideStreamIDType.disable:
output, side_stream_sync_tensor = output
if self.use_all_reduce:
output = self.forward_allreduce(output, all_reduce_params,
last_local_layer_residual)
if side_stream_id != SideStreamIDType.disable:
# All tensors that the side channel receives as input must be synced
# on the main stream, to prevent their memory from being released or
# reused by the main stream before the side stream has finished.
tensors_to_sync = (side_stream_sync_tensor, hidden_states,
token_selected_experts, token_final_scales,
lora_layer_params)
tensors_to_sync = tuple(t for t in tensors_to_sync if t is not None)
output = (output, tensors_to_sync)
return output
def forward_experts(self, hidden_states, token_selected_experts,
token_final_scales, lora_layer_params, side_stream_id):
groupwise_quant_params = MoeGroupwiseQuantParams()
if self.quant_mode.has_fp8_qdq():
assert self.fc.weight.value.dtype == trt.fp8, (
"mlp fc weight dtype should be fp8 in the fp8 quantization mode."
)
assert self.proj.weight.value.dtype == trt.fp8, (
"mlp proj weight dtype should be fp8 in the fp8 quantization mode."
)
hidden_states_quant = hidden_states
if hidden_states_quant.dtype != trt.fp8:
hidden_states_quant = quantize(
hidden_states, self.fc.activation_scaling_factor.value,
'fp8')
dtype_quant = trt.fp8
weight_dtype_quant = trt.fp8
fc1_dequant = self.fc.weights_scaling_factor.value * self.fc.activation_scaling_factor.value
fc2_quant = div(1.0, self.proj.activation_scaling_factor.value)
fc2_dequant = self.proj.weights_scaling_factor.value * self.proj.activation_scaling_factor.value
fc1_act_dequant = self.fc.activation_scaling_factor.value
scale_1 = fc1_dequant
scale_2 = fc2_quant
scale_3 = fc2_dequant
scale_4 = None
scale_5 = fc1_act_dequant
scale_6 = None
output_dtype_quant = self.dtype
if output_dtype_quant == trt.fp8 and scale_4 is None:
raise RuntimeError(
"Cannot output FP8 value without knowing quantization parameter"
)
elif self.quant_mode.has_nvfp4():
# We pass through the weights unchanged, the quantization is done in the plugin
hidden_states_quant = hidden_states
dtype_quant = trt.fp4
weight_dtype_quant = trt.fp4
output_dtype_quant = self.dtype
scale_1 = div(1.0, self.fc.activation_global_scaling_factor.value)
scale_2 = self.fc.weights_block_scaling_factor_interleaved
scale_3 = self.fc.alpha
scale_4 = div(1.0, self.proj.activation_global_scaling_factor.value)
scale_5 = self.proj.weights_block_scaling_factor_interleaved
scale_6 = self.proj.alpha
elif self.quant_mode.has_per_group_scaling():
hidden_states_quant = hidden_states
dtype_quant = trt.fp8 if self.use_w4a8_awq else self.dtype
weight_dtype_quant = self.weight_dtype
output_dtype_quant = self.dtype
scale_1 = None
scale_2 = None
scale_3 = None
scale_4 = None
scale_5 = None
scale_6 = None
pre_quant_scale_1 = self.fc.prequant_scaling_factor.value if self.fc.prequant_scaling_factor else None
zero_1 = self.fc.zero.value if self.fc.zero else None
alpha_1 = self.fc.alpha.value if self.fc.alpha else None
pre_quant_scale_2 = self.proj.prequant_scaling_factor.value if self.proj.prequant_scaling_factor else None
zero_2 = self.proj.zero.value if self.proj.zero else None
alpha_2 = self.proj.alpha.value if self.proj.alpha else None
groupwise_quant_params = MoeGroupwiseQuantParams(
self.group_size,
self.zero,
self.pre_quant_scale,
self.use_w4a8_awq,
pre_quant_scale_1,
self.fc.weights_scaling_factor.value,
zero_1,
alpha_1,
pre_quant_scale_2,
self.proj.weights_scaling_factor.value,
zero_2,
alpha_2,
)
else:
hidden_states_quant = hidden_states
dtype_quant = self.dtype
weight_dtype_quant = self.weight_dtype
output_dtype_quant = self.dtype
scale_1 = self.fc.per_channel_scale
scale_2 = self.proj.per_channel_scale
scale_3 = None
scale_4 = None
scale_5 = None
scale_6 = None
output = _moe_plugin(self.moe_config,
hidden_states_quant,
hidden_states,
token_selected_experts,
token_final_scales,
expert_weights_1=self.fc.weight.value,
expert_weights_2=self.proj.weight.value,
expert_bias_1=self.fc.bias,
expert_bias_2=self.proj.bias,
expert_scale_1=scale_1,
expert_scale_2=scale_2,
expert_scale_3=scale_3,
expert_scale_4=scale_4,
expert_scale_5=scale_5,
expert_scale_6=scale_6,
groupwise_quant_params=groupwise_quant_params,
hidden_size=self.hidden_size,
ffn_hidden_size=self.expert_inter_size,
act_fn=self.hidden_act,
dtype=dtype_quant,
weight_dtype=weight_dtype_quant,
output_dtype=output_dtype_quant,
lora_params=lora_layer_params,
lora_max_low_rank=self.max_low_rank,
quant_mode=self.quant_mode,
tp_size=self.mapping.moe_tp_size,
tp_rank=self.mapping.moe_tp_rank,
ep_size=self.mapping.moe_ep_size,
ep_rank=self.mapping.moe_ep_rank,
side_stream_id=side_stream_id)
return output
def forward_allreduce(self,
output,
all_reduce_params: Optional[AllReduceParams],
last_local_layer_residual=None):
if last_local_layer_residual is not None:
if self.mapping.tp_rank == 0:
output = output + last_local_layer_residual
else:
# we need to add this line here to minimize the numerical difference
output = output + 0
# reshape to (-1)
output = output.view(concat([-1]))
if self.tp_size > 1 and self.tp_group is not None:
output = reduce_scatter(output, self.tp_group)
# reshape to (-1, hidden_size // tp_size)
output = output.view(concat([-1, self.hidden_size // self.tp_size]))
return output
if self.tp_size > 1 and self.tp_group is not None:
output = allreduce(output,
self.tp_group,
all_reduce_params=all_reduce_params)
return output
def load_weights(self, moe: "MixtureOfExperts"):
'''
Load weights from base MOE layer
'''
raise NotImplementedError("Subclass shall override this")
def to(self,
moe_cls: Type["MixtureOfExperts"],
quant_config=None) -> "MixtureOfExperts":
if isinstance(moe_cls, MoeOOTB):
if self.moe_config.normalization_mode in [
MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED,
MoeConfig.ExpertScaleNormalizationMode.DEVICE_LIMITED_RENORM
]:
raise ValueError(
'MoeOOTB doesn\'t support group_limited_greedy yet.')
from ..quantization.quantize import quantize
if isinstance(self, moe_cls):
return self
new_moe = moe_cls(**get_init_params(self))
# If config is not None, set quantization from config
if quant_config is not None:
quantize(new_moe, quant_config)
new_moe.load_weights(self)
if not self.static_routing:
new_moe.router = self.router
return new_moe
MOE = MixtureOfExperts
# TODO: Support `group_limited_greedy` in MoeOOTB.
class MoeOOTB(MOE):
def init_experts(self):
if self.quant_mode.is_weight_only():
raise ValueError(
f"OOTB MOE does not support weight only quantization now, current quant mode: {self.quant_mode}"
)
if get_sm_version() >= 100:
raise RuntimeError(
"MoeOOTB does not support SM version >= 100, please use SM version < 100"
)
ClsMLP = GatedMLP if is_gated_activation(self.hidden_act) else MLP
tp_size = 1
tp_group = None
self.experts = ModuleList([
ClsMLP(self.hidden_size, self.expert_inter_size,
non_gated_version(self.hidden_act), self.bias, self.dtype,
tp_group, tp_size, self.quant_mode)
for _ in range(self.experts_per_node)
])
def moe_to_expert_lora_params(self, lora_layer_params, expert_idx):
def get_params(module):
ranks = lora_layer_params.get_runtime_params(0,
module).lora_ranks[0]
weights_pointers = lora_layer_params.get_runtime_params(
0, module).lora_weights_pointers[0]
return ranks, weights_pointers
if lora_layer_params is None:
return None
fc_lora_ranks, fc_lora_weights_pointers = get_params("moe_h_to_4h")
proj_lora_ranks, proj_lora_weights_pointers = get_params("moe_4h_to_h")
gate_lora_ranks = None
gate_lora_weights_pointers = None
if is_gated_activation(self.hidden_act):
gate_lora_ranks, gate_lora_weights_pointers = get_params("moe_gate")
return LoraParams(
lora_ranks=[{
"mlp_h_to_4h_lora_ranks": fc_lora_ranks,
"mlp_4h_to_h_lora_ranks": proj_lora_ranks,
"mlp_gate_lora_ranks": gate_lora_ranks,
}],
lora_weights_pointers=[{
"mlp_h_to_4h_lora_weights_pointers":
fc_lora_weights_pointers,
"mlp_4h_to_h_lora_weights_pointers":
proj_lora_weights_pointers,
"mlp_gate_lora_weights_pointers":
gate_lora_weights_pointers,
}],
host_context_lengths=lora_layer_params.host_context_lengths,
max_encoder_context_length=lora_layer_params.
max_encoder_context_length,
host_request_types=lora_layer_params.host_request_types,
host_encoder_input_lengths=lora_layer_params.
host_encoder_input_lengths,
weight_index=expert_idx,
)
def forward_experts(self, hidden_states, token_selected_experts,
token_final_scales, lora_layer_params, side_stream_id):
assert side_stream_id == SideStreamIDType.disable, "MoeOOTB does not support using side stream"
# TODO: https://nvbugspro.nvidia.com/bug/4781396 after this nvbug is fixed, we will remove this check.
if lora_layer_params is not None:
for module in ["mlp_h_to_4h", "mlp_4h_to_h", "mlp_gate"]:
if lora_layer_params.get_runtime_params(0, module) is not None:
raise RuntimeError(
f"MoE OOTB does not support {module} LoRA module, please enable MoE plugin"
)
topk_indices = token_selected_experts
topk_values = token_final_scales
hidden_size = shape(hidden_states, -1)
# [B*sq, hidden]
inputs_merged = hidden_states.view(concat([-1, hidden_size]))
flat_topk_indices = topk_indices.view(
concat([-1, shape(topk_indices, -1)]))
flat_topk_values = topk_values.view(concat([-1,
shape(topk_values, -1)]))
# Create output space
zero_buffer = inputs_merged * 0.0
output = zero_buffer
expert_indices_stack = []
indices_stack = []
# When topk indices are equal to expert index, the expert will inference the tokens.
# Bundle all indices and experts index, then do mask once.
for i, expert in enumerate(self.experts):
if self.mapping.has_moe_ep():
index = i + self.experts_per_node * self.mapping.moe_ep_rank
else:
index = i
expert_indices_stack.append(
flat_topk_indices.view(concat([1, shape(flat_topk_indices)])))
indices_stack.append(constant(int32_array(index)))
all_expert_indices = concat(expert_indices_stack, dim=0)
indices = expand(
concat(indices_stack).view(concat([len(self.experts), 1, 1])),
shape(all_expert_indices))
# Create all experts mask
all_expert_mask = all_expert_indices == indices
experts_weights = cast(
sum(flat_topk_values *
cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), self.dtype)
all_expert_mask = cast(
sum(cast(all_expert_mask, flat_topk_values.dtype),
dim=-1,
keepdim=True), 'bool')
all_expert_mask = repeat_interleave(all_expert_mask, shape(output, -1),
2)
# split the mask and weights for each expert
experts_mask = split(all_expert_mask, 1, dim=0)
expert_weights = split(experts_weights, 1, dim=0)
for i, expert in enumerate(self.experts):
if self.mapping.has_moe_ep():
index = i + self.experts_per_node * self.mapping.moe_ep_rank
else:
index = i
# get mask token index
non_zero_index = nonzero(experts_mask[i].view(
concat([-1, hidden_size])))
non_zero_index = non_zero_index.transpose(1, 0)
input_for_expert = gather_nd(inputs_merged, non_zero_index, 0)
input_for_expert = input_for_expert.view(concat([-1, hidden_size]),
zero_is_placeholder=False)
# Expert inference
expert_output = expert(
input_for_expert,
lora_layer_params=self.moe_to_expert_lora_params(
lora_layer_params, index))
# scatter expert output to real position
expert_finialized_output = zero_buffer
expert_finialized_output = scatter_nd(
expert_finialized_output, non_zero_index,
expert_output.view([-1])) * expert_weights[i]
output += expert_finialized_output
output = output.view(shape(hidden_states))
return output
def load_weights(self, moe: MOE):
for i, expert in enumerate(self.experts):
is_gated_act = is_gated_activation(self.hidden_act)
# Gated weight pack in expert1 weights
# expert_weights_1
experts_weight_1_raw = moe.fc.weight.raw_value
fc1_weight_scale = None
fc1_activation_scale = None
fc2_weight_scale = None
fc2_activation_scale = None
if self.quant_mode.has_fp8_qdq():
fc1_weight_scale = moe.fc.weights_scaling_factor.raw_value
fc1_activation_scale = moe.fc.activation_scaling_factor.raw_value
fc2_weight_scale = moe.proj.weights_scaling_factor.raw_value
fc2_activation_scale = moe.proj.activation_scaling_factor.raw_value
if self.quant_mode.is_weight_only():
expert.fc.weight.value = experts_weight_1_raw[
i, :, -self.expert_inter_size:]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :, :self.expert_inter_size]
else:
expert.fc.weight.value = experts_weight_1_raw[
i, -self.expert_inter_size:, :]
if is_gated_act:
expert.gate.weight.value = experts_weight_1_raw[
i, :self.expert_inter_size, :]
if self.quant_mode.has_fp8_qdq():
expert.fc.activation_scaling_factor.value = fc1_activation_scale
expert.fc.weights_scaling_factor.value = fc1_weight_scale[i]
expert.proj.activation_scaling_factor.value = fc2_activation_scale
expert.proj.weights_scaling_factor.value = fc2_weight_scale[i]
if is_gated_act:
expert.gate.activation_scaling_factor.value = fc1_activation_scale
expert.gate.weights_scaling_factor.value = fc1_weight_scale[
i]
if self.quant_mode.has_nvfp4():
expert.fc.activation_global_scaling_factor.value = moe.fc.activation_global_scaling_factor.raw_value
expert.fc.weights_block_scaling_factor.value = moe.fc.weights_block_scaling_factor.raw_value[
i, -self.expert_inter_size:, :]
expert.fc.weights_block_scaling_factor_interleaved.value = moe.fc.weights_block_scaling_factor_interleaved.raw_value[
i, -self.expert_inter_size:, :]
expert.fc.alpha.value = np.array(moe.fc.alpha.raw_value[i])
if is_gated_act:
expert.gate.activation_global_scaling_factor.value = moe.fc.activation_global_scaling_factor.raw_value
expert.gate.weights_block_scaling_factor.value = moe.fc.weights_block_scaling_factor.raw_value[
i, :-self.expert_inter_size, :]
expert.gate.weights_block_scaling_factor_interleaved.value = moe.fc.weights_block_scaling_factor_interleaved.raw_value[
i, :-self.expert_inter_size, :]
expert.gate.alpha.value = np.array(
moe.fc.alpha.raw_value[i])
expert.proj.activation_global_scaling_factor.value = moe.proj.activation_global_scaling_factor.raw_value
expert.proj.weights_block_scaling_factor.value = moe.proj.weights_block_scaling_factor.raw_value[
i]
expert.proj.weights_block_scaling_factor_interleaved.value = moe.proj.weights_block_scaling_factor_interleaved.raw_value[
i]
expert.proj.alpha.value = np.array(moe.proj.alpha.raw_value[i])
# expert_weights_2
experts_weight_2_raw = moe.proj.weight.raw_value
expert.proj.weight.value = experts_weight_2_raw[i, :, :]
has_bias = self.bias
if has_bias:
experts_bias_1_raw = moe.fc.bias.raw_value
expert.fc.bias.value = experts_bias_1_raw[
i, -self.expert_inter_size:]
experts_bias_2_raw = moe.proj.bias.raw_value
expert.proj.bias.value = experts_bias_2_raw[i, :]
if is_gated_act:
expert.gate.bias.value = experts_bias_1_raw[
i, :self.expert_inter_size]
# Add SharedMoE class
class SharedMoE(MOE):
def __init__(self,
moe_config: MoeConfig,
hidden_size: int,
ffn_hidden_size: int,
hidden_act: str,
mapping: Mapping = Mapping(),
bias: bool = True,
dtype=None,
tp_group: List[int] = None,
tp_size: int = 1,
quant_mode=QuantMode(0),
use_shared_gate: bool = False,
use_side_stream: bool = False):
super().__init__(
moe_config=moe_config,
hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
hidden_act=hidden_act,
mapping=mapping,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
use_all_reduce=False,
)
self.shared_expert = MLP(
hidden_size=hidden_size,
ffn_hidden_size=moe_config.shared_expert_intermediate_size,
hidden_act=hidden_act,
bias=False,
dtype=self.dtype,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=self.quant_mode,
is_expert=True,
)
self.use_shared_gate = use_shared_gate
if use_shared_gate:
self.shared_expert_gate = RowLinear(
hidden_size,
1,
bias=False,
dtype=dtype,
tp_group=None,
tp_size=1,
)
else:
self.shared_expert_gate = None
self.use_side_stream = use_side_stream
def forward(self, hidden_states, lora_layer_params=None):
side_stream_id = SideStreamIDType.moe if self.use_side_stream else SideStreamIDType.disable
if self.use_side_stream:
routed_output, tensors_to_sync = super().forward(
hidden_states,
lora_layer_params=lora_layer_params,
side_stream_id=side_stream_id,
)
else:
routed_output = super().forward(
hidden_states,
lora_layer_params=lora_layer_params,
)
shared_output = self.shared_expert(
hidden_states,
lora_layer_params=lora_layer_params,
)
if self.shared_expert_gate is not None:
gate_lora_params = None
if lora_layer_params is not None:
gate_lora_params = lora_layer_params.get_runtime_params(
0, "mlp_router")
shared_output = sigmoid(
self.shared_expert_gate(hidden_states,
gate_lora_params)) * shared_output
if self.use_side_stream:
# tensors_to_sync are included in the inputs to ensure that their
# memory space is not reused for other tensors on the main stream
# until the side stream has finished
shared_output = cuda_stream_sync([shared_output, *tensors_to_sync],
side_stream_id)
hidden_states = routed_output + shared_output
if self.tp_size > 1 and self.tp_group is not None:
hidden_states = allreduce(hidden_states, self.tp_group)
return hidden_states