TensorRT-LLMs/examples/disaggregated/slurm/benchmark/submit.py

735 lines
28 KiB
Python

#!/usr/bin/env python3
import argparse
import glob
import json
import math
import os
import shutil
import subprocess
import sys
import traceback
from datetime import datetime
from typing import Any, Dict, List
import yaml
def parse_args():
parser = argparse.ArgumentParser(
description='Submit disaggregated benchmark job')
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-c',
'--config',
type=str,
help='Path to the configuration YAML file')
group.add_argument('-d',
'--dir',
type=str,
help='Directory containing YAML configuration files')
parser.add_argument('--log-dir',
type=str,
default=None,
help='Log directory')
parser.add_argument('--dry-run',
action='store_true',
help='Dry run the Python part, test purpose only')
return parser.parse_args()
def load_config(config_path):
with open(config_path, 'r') as f:
return yaml.safe_load(f)
def save_worker_config(worker_config, output_path):
"""Save worker config to a separate YAML file."""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, 'w') as f:
yaml.dump(worker_config, f, default_flow_style=False)
def calculate_nodes(world_size, num_servers, gpus_per_node):
"""Calculate required nodes based on world size and server count."""
return math.ceil(world_size * num_servers / gpus_per_node)
def allocate_gpus(
total_nodes: int,
gpus_per_node: int,
num_gen_servers: int,
num_ctx_servers: int,
gen_world_size: int,
ctx_world_size: int,
base_port: int = 8000,
) -> List[Dict[str, Any]]:
allocations = {}
hostnames = [f"<node{i}_placeholder>" for i in range(total_nodes)]
global_gpu_cursor = 0
def get_gpu_location(gpus_per_node: int):
node_id = global_gpu_cursor // gpus_per_node
local_gpu_id = global_gpu_cursor % gpus_per_node
return node_id, local_gpu_id
def assign_server(server_allocation: Dict[str, Any], world_size: int,
gpus_per_node: int):
nonlocal global_gpu_cursor
for _ in range(world_size):
node_id, gpu_id = get_gpu_location(gpus_per_node)
hostname = hostnames[node_id]
if hostname not in server_allocation["nodes"]:
server_allocation["nodes"][hostname] = []
server_allocation["nodes"][hostname].append(gpu_id)
global_gpu_cursor += 1
def assign_servers(
server_allocations: Dict[str, Any],
server_type: str,
num_servers: int,
world_size: int,
gpus_per_node: int,
):
if server_type not in server_allocations:
server_allocations[server_type] = {}
for i in range(num_servers):
server_allocation = {
"port": base_port + i,
"nodes": {},
}
assign_server(server_allocation, world_size, gpus_per_node)
server_allocations[server_type][i] = server_allocation
assign_servers(allocations, "GEN", num_gen_servers, gen_world_size,
gpus_per_node)
assign_servers(allocations, "CTX", num_ctx_servers, ctx_world_size,
gpus_per_node)
return allocations
def convert_allocations_to_server_config(allocations, server_port=8333):
generation_servers = {}
context_servers = {}
server_hostname = None
for server_type in allocations.keys():
num_servers = len(allocations[server_type])
urls = []
for server_id in allocations[server_type].keys():
instance = allocations[server_type][server_id]
urls.append(
f"{list(instance['nodes'].keys())[0]}:{instance['port']}")
server_config_entry = {'num_instances': num_servers, 'urls': urls}
if server_type == "GEN":
generation_servers = server_config_entry
server_hostname = urls[0].split(':')[0]
if allocations[server_type][server_id]['port'] == server_port:
server_port += 1 # Avoid port conflict
elif server_type == "CTX":
context_servers = server_config_entry
server_config = {
'backend': 'pytorch',
'hostname': server_hostname,
'port': server_port,
'context_servers': context_servers,
'generation_servers': generation_servers
}
return server_config
def convert_envs_to_str(env_vars: Dict[str, str]) -> str:
return ','.join([f"{key}='{value}'" for key, value in env_vars.items()])
def replace_env_in_file(log_dir, file_path, env_var):
with open(file_path, 'r', encoding='utf-8') as f:
config_content = f.read()
for env_name, env_value in env_var.items():
file_content = config_content.replace(env_name, env_value)
tmp_dir = os.path.join(log_dir, "lm_eval_configs")
os.makedirs(tmp_dir, exist_ok=True)
tmp_file = os.path.join(tmp_dir, os.path.basename(file_path))
# Write modified config to temp file
with open(tmp_file, 'w', encoding='utf-8') as f:
f.write(file_content)
# Check if has custom utils.py in the same directory
# Needed for GPQA task
custom_utils_path = os.path.join(os.path.dirname(file_path), 'utils.py')
if os.path.exists(custom_utils_path):
# copy utils.py to temp directory
shutil.copy(custom_utils_path, tmp_dir)
# Return temp directory
return tmp_dir
def build_worker_environment(worker_config, env_config, role, benchmark_mode,
nsys_on, profile_range, concurrency, gpu_ids):
"""Build complete environment dictionary for worker processes.
Args:
worker_config: Worker configuration dict
env_config: Environment configuration dict
role: Server role ("CTX" or "GEN")
benchmark_mode: Benchmark mode string
nsys_on: Whether nsys profiling is enabled
profile_range: Profile range string (e.g., "10-30")
concurrency: Concurrency level
gpu_ids: List of GPU IDs assigned to this worker
Returns:
Dictionary of environment variables
Note:
CUDA_VISIBLE_DEVICES is NOT set here. It is passed as an argument to
start_worker.sh and set per-rank based on SLURM_LOCALID.
"""
env = {}
# 1. Use gpu_ids to set CUDA_VISIBLE_DEVICES
cuda_devices = ','.join(map(str, gpu_ids))
env["CUDA_VISIBLE_DEVICES"] = cuda_devices
# 2. Parse user-defined worker env vars from config
worker_env_var = env_config.get('worker_env_var', '')
for var_string in worker_env_var.split():
if '=' in var_string:
key, val = var_string.split('=', 1)
env[key] = val
# 3. Add role-specific env vars (CTX or GEN)
role_env_vars = {
"CTX": env_config.get('ctx_worker_env_var', ''),
"GEN": env_config.get('gen_worker_env_var', '')
}
role_specific_env_var = role_env_vars.get(role, '')
for var_string in role_specific_env_var.split():
if '=' in var_string:
key, val = var_string.split('=', 1)
env[key] = val
# 4. Add mode-based env vars
if benchmark_mode == "gen_only_no_context":
env["TRTLLM_DISAGG_BENCHMARK_GEN_ONLY"] = "1"
if benchmark_mode == "gen_only":
env["TRTLLM_DISABLE_KV_CACHE_TRANSFER_OVERLAP"] = "1"
if role == "GEN":
env["TLLM_BENCHMARK_REQ_QUEUES_SIZE"] = str(concurrency)
# 5. Add profiling env vars (conditional)
if nsys_on:
env["TLLM_PROFILE_RECORD_GC"] = "1"
env["TLLM_NVTX_DEBUG"] = "1"
env["NSYS_MPI_STORE_TEAMS_PER_RANK"] = "1"
env["TLLM_PROFILE_START_STOP"] = profile_range
return env
def build_server_environment(env_config, benchmark_mode):
"""Build complete environment dictionary for server process.
Args:
env_config: Environment configuration dict
benchmark_mode: Benchmark mode string
Returns:
Dictionary of environment variables
"""
env = {}
# Parse user-defined server env vars
server_env_var = env_config.get('server_env_var', '')
for var_string in server_env_var.split():
if '=' in var_string:
key, val = var_string.split('=', 1)
env[key] = val
# Add mode-based env vars
if benchmark_mode == "gen_only_no_context":
env["TRTLLM_DISAGG_BENCHMARK_GEN_ONLY"] = "1"
return env
def format_export_string(env_dict):
"""Convert environment dictionary to srun --export format.
Args:
env_dict: Dictionary of environment variables
Returns:
String formatted for srun --export flag (e.g., "KEY1=val1,KEY2=val2")
Returns "NONE" if no variables specified.
Note:
Values containing commas are quoted to avoid conflicts with srun's delimiter.
"""
if not env_dict:
return "NONE"
export_list = []
for k, v in env_dict.items():
# srun cannot handle values that contain commas
if ',' in v:
export_list.append(f"'{k}={v}'")
else:
export_list.append(f"{k}={v}")
return ",".join(export_list)
def save_env_file(env_file, server_env_var, worker_env_var, ctx_worker_env_var,
gen_worker_env_var):
def get_env_var_str(env_var_str):
env_data = {}
for env_var in env_var_str.split():
if '=' in env_var:
key, value = env_var.split('=', 1)
env_data[key] = value
return env_data
env_data = {}
env_data['server_env_var'] = get_env_var_str(server_env_var)
env_data['worker_env_var'] = get_env_var_str(worker_env_var)
env_data['ctx_worker_env_var'] = get_env_var_str(ctx_worker_env_var)
env_data['gen_worker_env_var'] = get_env_var_str(gen_worker_env_var)
with open(env_file, 'w') as f:
json.dump(env_data, f, indent=2)
print(f"Environment variables saved to {env_file}")
def submit_job(config, log_dir, dry_run):
# Extract configurations
slurm_config = config['slurm']
slurm_config.setdefault('extra_args', '')
slurm_config.setdefault('set_segment', True)
hw_config = config['hardware']
env_config = config['environment']
worker_config = config['worker_config']
benchmark_config = config['benchmark']
if 'work_dir' in env_config and os.path.isdir(env_config['work_dir']):
script_dir = env_config['work_dir']
else:
script_dir = os.path.dirname(os.path.abspath(__file__))
# Set default accuracy configuration for backward compatibility
if 'accuracy' not in config:
config['accuracy'] = {
'enable_accuracy_test':
False,
'model':
'local-completions',
'tasks':
'gsm8k',
'model_args_extra':
'num_concurrent=512,max_retries=3,tokenized_requests=false,timeout=1200,max_gen_toks=256,max_length=4096'
}
# Set default environment configuration for backward compatibility
env_config.setdefault('trtllm_repo', '')
env_config.setdefault('build_wheel', False)
env_config.setdefault('cuda_architectures', '')
env_config.setdefault('trtllm_wheel_path', '')
env_config.setdefault('worker_env_var', '')
env_config.setdefault('server_env_var', '')
profiling_config = config.get('profiling', {})
profiling_config.setdefault('nsys_on', False)
profiling_config.setdefault('ctx_profile_range', '10-30')
profiling_config.setdefault('gen_profile_range', '200-250')
# Get number of servers from config
ctx_num = hw_config['num_ctx_servers']
gen_num = hw_config['num_gen_servers']
gpus_per_node = hw_config['gpus_per_node']
# Calculate nodes based on world sizes
ctx_tp_size = worker_config['ctx'].get('tensor_parallel_size', 1)
ctx_cp_size = worker_config['ctx'].get('context_parallel_size', 1)
ctx_pp_size = worker_config['ctx'].get('pipeline_parallel_size', 1)
ctx_world_size = ctx_tp_size * ctx_cp_size * ctx_pp_size
ctx_nodes = calculate_nodes(ctx_world_size, ctx_num, gpus_per_node)
gen_tp_size = worker_config['gen'].get('tensor_parallel_size', 1)
gen_cp_size = worker_config['gen'].get('context_parallel_size', 1)
gen_pp_size = worker_config['gen'].get('pipeline_parallel_size', 1)
gen_world_size = gen_tp_size * gen_cp_size * gen_pp_size
gen_nodes = calculate_nodes(gen_world_size, gen_num, gpus_per_node)
ucx_warmup_requests = 2 * ctx_world_size * \
gen_world_size if benchmark_config['mode'] == "e2e" else 0
total_nodes = ctx_nodes + gen_nodes
total_tasks = total_nodes * gpus_per_node
# Generate log directory path based on configuration
isl = benchmark_config['input_length']
osl = benchmark_config['output_length']
gen_batch_size = worker_config['gen']['max_batch_size']
gen_enable_attention_dp = worker_config['gen']['enable_attention_dp']
# Get eplb num_slots for gen worker
load_balancer_config = worker_config['gen'].get('moe_config', {}).get(
'load_balancer', {})
if isinstance(load_balancer_config, str):
with open(load_balancer_config, 'r') as f:
load_balancer_config = yaml.safe_load(f)
eplb_num_slots = load_balancer_config.get('num_slots', 0)
# Get mtp_size from gen config's speculative_config
mtp_size = worker_config['gen'].get('speculative_config',
{}).get('num_nextn_predict_layers', 0)
# Create base log directory path
if 'log_dir' in env_config and env_config['log_dir']:
log_dir = env_config['log_dir']
if log_dir is None:
log_base = os.path.join(script_dir, "logs")
date_prefix = datetime.now().strftime("%Y%m%d-%H%M%S")
log_base = os.path.join(log_base, f"{date_prefix}/{isl}-{osl}")
# Determine directory suffix based on attention_dp
if gen_enable_attention_dp:
dir_suffix = f"disagg_ctx{ctx_num}_gen{gen_num}_dep{gen_tp_size}_batch{gen_batch_size}_eplb{eplb_num_slots}_mtp{mtp_size}"
else:
dir_suffix = f"disagg_ctx{ctx_num}_gen{gen_num}_tep{gen_tp_size}_batch{gen_batch_size}_eplb{eplb_num_slots}_mtp{mtp_size}"
# Create full log directory path
log_dir = os.path.join(log_base, dir_suffix)
# if trtllm_config.yaml exists, don't remove the directory, remove other files in the directory except trtllm_config.yaml
# also don't remove concurrency_* folders
if os.path.exists(log_dir):
if not os.path.exists(os.path.join(log_dir, 'trtllm_config.yaml')):
print(f"[WARNING] Removing existing log directory: {log_dir}")
shutil.rmtree(log_dir)
else:
print(
f"[WARNING] trtllm_config.yaml exists, not removing the directory: {log_dir}"
)
for file in os.listdir(log_dir):
if file != 'trtllm_config.yaml' and not file.startswith(
'concurrency_'):
if os.path.isdir(os.path.join(log_dir, file)):
shutil.rmtree(os.path.join(log_dir, file))
else:
os.remove(os.path.join(log_dir, file))
os.makedirs(log_dir, exist_ok=True)
print(f"Log will be saved to: {log_dir}")
# Save environment variables (for record-keeping only)
worker_env_var = env_config.get('worker_env_var', '')
ctx_worker_env_var = env_config.get('ctx_worker_env_var', '')
gen_worker_env_var = env_config.get('gen_worker_env_var', '')
server_env_var = env_config.get('server_env_var', '')
save_env_file(os.path.join(log_dir, "env_vars.json"), server_env_var,
worker_env_var, ctx_worker_env_var, gen_worker_env_var)
# Setup config file paths and save worker configs
ctx_config_path = os.path.join(log_dir, 'ctx_config.yaml')
gen_config_path = os.path.join(log_dir, 'gen_config.yaml')
save_worker_config(worker_config['ctx'], ctx_config_path)
save_worker_config(worker_config['gen'], gen_config_path)
# Prepare allocation template
allocations = allocate_gpus(
total_nodes=total_nodes,
gpus_per_node=gpus_per_node,
num_gen_servers=gen_num,
num_ctx_servers=ctx_num,
gen_world_size=gen_world_size,
ctx_world_size=ctx_world_size,
)
with open(os.path.join(log_dir, "allocations.json"), "w") as f:
json.dump(allocations, f, indent=2)
# Generate disagg server config
server_config = convert_allocations_to_server_config(allocations)
with open(os.path.join(log_dir, "server_config_base.yaml"), "w") as f:
yaml.dump(server_config, f)
disagg_server_hostname = server_config['hostname']
disagg_server_port = server_config['port']
container_name = "disaggr-test"
start_server_cmds = []
container_mount_str = env_config['container_mount']
container_mount_str += f",{script_dir}:{script_dir}"
# Pre-define server-type-specific configurations
server_configs = {
"GEN": {
"world_size": gen_world_size,
"profile_range": profiling_config['gen_profile_range'],
"config_path": gen_config_path
},
"CTX": {
"world_size": ctx_world_size,
"profile_range": profiling_config['ctx_profile_range'],
"config_path": ctx_config_path
}
}
# Generate start worker commands with placeholder hostnames
for server_type in allocations.keys():
server_cfg = server_configs[server_type]
for server_id in allocations[server_type].keys():
allocation = allocations[server_type][server_id]
# Get GPU IDs for this server from allocation
# When multi-node, all nodes have same device list, so use first node [0]
gpu_ids = list(allocation["nodes"].values())[0]
# Build environment for this worker
worker_env = build_worker_environment(
worker_config=worker_config,
env_config=env_config,
role=server_type,
benchmark_mode=benchmark_config['mode'],
nsys_on=profiling_config['nsys_on'],
profile_range=server_cfg['profile_range'],
concurrency=benchmark_config['concurrency_list'].split(',')[0],
gpu_ids=gpu_ids,
)
export_str = format_export_string(worker_env)
# Use script_dir for start_worker.sh
cmd = [
"srun -l",
f"--nodelist {','.join(allocation['nodes'].keys())}",
f"-N {len(allocation['nodes'])}",
f"--ntasks {server_cfg['world_size']}",
f"--ntasks-per-node {gpus_per_node}",
f"--export=\"{export_str}\"",
f"--container-image {env_config['container_image']}",
f"--container-name {container_name}",
f"--container-mounts {container_mount_str}",
"--no-container-mount-home --mpi=pmix --overlap",
f"bash {os.path.join(script_dir, 'start_worker.sh')}",
server_type,
str(server_id),
env_config['model_path'],
str(allocation["port"]),
str(slurm_config['numa_bind']).lower(),
log_dir,
str(profiling_config['nsys_on']).lower(),
server_cfg['config_path'],
f"&> {log_dir}/3_output_{server_type}_{server_id}.log &",
]
start_server_cmds.append(" ".join(cmd))
# Generate start server commands (use script_dir for start_server.sh)
server_env = build_server_environment(env_config, benchmark_config['mode'])
export_str = format_export_string(server_env)
cmd = [
"srun -l",
f"--nodelist {disagg_server_hostname}",
f"--container-name={container_name}",
f"--export=\"{export_str}\"",
f"--container-image={env_config['container_image']}",
f"--container-mounts={container_mount_str}",
f"--no-container-mount-home --mpi=pmix --overlap -N 1 -n 1",
f"bash {os.path.join(script_dir, 'start_server.sh')} {os.path.join(log_dir, 'server_config.yaml')}",
f"&> {log_dir}/4_output_server.log &",
]
start_server_cmds.append(" ".join(cmd))
# Generate wait server command (use script_dir for wait_server.sh)
cmd = [
"srun -l",
f"--container-name={container_name}",
f"--container-mounts={container_mount_str}",
f"--mpi=pmix --overlap -N 1 -n 1",
f"bash {os.path.join(script_dir, 'wait_server.sh')} {disagg_server_hostname} {disagg_server_port}",
f"&> {log_dir}/5_wait_server.log",
]
start_server_cmds.append(" ".join(cmd))
with open(os.path.join(log_dir, "start_server_cmds_base.sh"), "w") as f:
f.write("\n".join(start_server_cmds) + "\n")
# Generate client commands (use script_dir for benchmark scripts)
client_cmds = []
client_slurm_prefix = [
f"srun -l --container-name={container_name}",
f"--container-mounts={container_mount_str}",
f"--mpi=pmix --overlap -N 1 -n 1",
]
# Append benchmark commands
if benchmark_config.get('enable_benchmark', True):
env_var = config['benchmark'].get('env_var', {})
benchmark_prefix = client_slurm_prefix + [
f"--export \"{convert_envs_to_str(env_var)}\""
]
if benchmark_config['use_nv_sa_benchmark']:
if benchmark_config['mode'] == "gen_only":
print(
f"[ERROR] SA benchmark client script is not supported for gen_only mode"
)
sys.exit(1)
benchmark_cmd = [
f"bash {os.path.join(script_dir, 'run_benchmark_nv_sa.sh')}",
f"'{env_config['model_path']}' {isl} {osl} {benchmark_config['benchmark_ratio']} {benchmark_config['multi_round']} {gen_num} '{benchmark_config['concurrency_list']}' {benchmark_config['streaming']} '{log_dir}' {disagg_server_hostname} {disagg_server_port} {ucx_warmup_requests}",
f"&> {log_dir}/6_bench.log"
]
client_cmds.append(" ".join(benchmark_prefix + benchmark_cmd))
else:
benchmark_cmd = [
f"bash {os.path.join(script_dir, 'run_benchmark.sh')}",
f"'{env_config['model_path']}' '{benchmark_config['dataset_file']}' {benchmark_config['multi_round']} {gen_num} '{benchmark_config['concurrency_list']}' {benchmark_config['streaming']} '{log_dir}' {disagg_server_hostname} {disagg_server_port} {ucx_warmup_requests}",
f"&> {log_dir}/6_bench.log"
]
client_cmds.append(" ".join(benchmark_prefix + benchmark_cmd))
# Append accuracy test commands
if config['accuracy']['enable_accuracy_test']:
env_var = config['accuracy'].get('env_var', {})
accuracy_prefix = client_slurm_prefix + [
f"--export \"{convert_envs_to_str(env_var)}\""
]
for task in config['accuracy']['tasks']:
extra_kwargs = config['accuracy']['tasks'][task].get(
'extra_kwargs', {})
extra_kwargs_str = ""
for key, value in extra_kwargs.items():
if isinstance(value, bool):
if value:
extra_kwargs_str += f" --{key}"
elif key == "custom_config":
extra_kwargs_str += f" --include_path={replace_env_in_file(log_dir, value, env_var)}"
else:
extra_kwargs_str += f" --{key}='{value}'"
end_point_map = {
'local-completions': 'v1/completions',
'local-chat-completions': 'v1/chat/completions',
}
model = config['accuracy']['tasks'][task]['model']
accuracy_cmd = [
'lm_eval', '--model', model, '--tasks', task, '--model_args',
f"model={env_config['model_path']},base_url=http://{disagg_server_hostname}:{disagg_server_port}/{end_point_map[model]},{config['accuracy']['tasks'][task]['model_args_extra']}",
'--log_samples', '--output_path',
f'{log_dir}/accuracy_eval_{task}', extra_kwargs_str,
f"&> {log_dir}/7_accuracy_eval_{task}.log"
]
client_cmds.append(" ".join(accuracy_prefix + accuracy_cmd))
# record ${SLURM_JOB_NODELIST} to ${log_dir}/8_done_job_id.txt
done_cmd = [
"echo", "${SLURM_JOB_NODELIST}", ">",
f"{log_dir}/8_done_${{SLURM_JOB_ID}}.txt"
]
client_cmds.append(" ".join(done_cmd))
with open(os.path.join(log_dir, "client_cmds_base.sh"), "w") as f:
f.write("\n".join(client_cmds) + "\n")
# Resolve slurm script_file path
# If it's a relative path, make it relative to script_dir
slurm_script_file = slurm_config['script_file']
if not os.path.isabs(slurm_script_file):
slurm_script_file = os.path.join(script_dir, slurm_script_file)
# Verify the script file exists
if not os.path.exists(slurm_script_file):
print(f"[ERROR] SLURM script file not found: {slurm_script_file}",
file=sys.stderr)
sys.exit(1)
# Prepare sbatch command
# yapf: disable
cmd = [
'sbatch',
f'--partition={slurm_config["partition"]}',
f'--account={slurm_config["account"]}',
f'--time={slurm_config["job_time"]}',
f'--job-name={slurm_config["job_name"]}',
f'--nodes={total_nodes}',
f'--ntasks={total_tasks}',
f'--ntasks-per-node={hw_config["gpus_per_node"]}',
*([] if not slurm_config['set_segment']
else [f'--segment={total_nodes}']),
f'--output={log_dir}/slurm-%j.out',
f'--error={log_dir}/slurm-%j.err',
*([arg for arg in slurm_config['extra_args'].split() if arg]),
slurm_script_file,
# Benchmark Configuration
'--benchmark-mode', benchmark_config['mode'],
# Environment and paths
'--trtllm-repo', env_config['trtllm_repo'],
'--work-dir', script_dir,
'--full-logdir', log_dir,
'--container-name', container_name,
'--container-mount', container_mount_str,
'--container-image', env_config['container_image'],
'--build-wheel', str(env_config['build_wheel']).lower(),
'--cuda-architectures', env_config['cuda_architectures'],
'--trtllm-wheel-path', env_config['trtllm_wheel_path'],
]
# yapf: enable
if dry_run:
print(
"[WARNING] Dry run mode, will not submit the job. This should be used for test purpose only."
)
print("sbatch command:")
print(" ".join(cmd))
return
else:
# Submit the job
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
print(f"Error submitting job: {e}", file=sys.stderr)
sys.exit(1)
def main():
args = parse_args()
# Determine which mode to use
if args.config:
# Single config file mode
config_files = [args.config]
else:
# Directory mode - find all YAML files
yaml_pattern = os.path.join(args.dir, '*.yaml')
config_files = sorted(glob.glob(yaml_pattern))
if not config_files:
print(f"No YAML files found in directory: {args.dir}",
file=sys.stderr)
sys.exit(1)
print(f"Found {len(config_files)} YAML file(s) in {args.dir}")
# Process each config file
for config_file in config_files:
print(f"Processing: {config_file}")
try:
config = load_config(config_file)
submit_job(config, args.log_dir, args.dry_run)
print(f"Successfully submitted job for: {config_file}\n")
except Exception as e:
traceback.print_exc()
print(f"Error processing {config_file}: {e}", file=sys.stderr)
# Continue processing other files even if one fails
continue
if __name__ == '__main__':
main()