TensorRT-LLMs/tensorrt_llm/models/nemotron_nas/model.py
2025-10-28 09:17:26 -07:00

817 lines
33 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Type, Union
from tensorrt_llm.functional import (AllReduceFusionOp, AllReduceParams,
AttentionMaskType, PositionEmbeddingType,
Tensor, gather_last_token_logits, recv,
send)
from tensorrt_llm.layers.attention import (Attention, AttentionParams,
KeyValueCacheParams,
SpecDecodingParams)
from tensorrt_llm.layers.embedding import Embedding
from tensorrt_llm.layers.linear import ColumnLinear
from tensorrt_llm.layers.lora import LoraParams
from tensorrt_llm.layers.mlp import GatedMLP
from tensorrt_llm.layers.normalization import RmsNorm
from tensorrt_llm.llmapi.kv_cache_type import KVCacheType
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models.convert_utils import has_safetensors
from tensorrt_llm.models.modeling_utils import DecoderModelForCausalLM
from tensorrt_llm.models.nemotron_nas.config import DeciConfig
from tensorrt_llm.models.nemotron_nas.convert import (
load_weights_from_hf_model, load_weights_from_hf_safetensors,
update_weights_following_modelopt_optimization)
from tensorrt_llm.module import Module, ModuleList
from tensorrt_llm.plugin.plugin import init_all_reduce_helper
from ..._common import default_net
from ..._utils import pad_vocab_size
from ..modeling_utils import PretrainedConfig, QuantConfig, preprocess_weights
@dataclass
class DeciLMLayerOutput:
hidden_states: Tensor
present_kv: Optional[Tensor] = None
@dataclass
class DeciLMLayerListOutput:
hidden_states: Tensor
present_kvs: List[Tensor]
class NoOp(Module):
def forward(self, hidden_states: Tensor, *args, **kwargs) -> int:
return 0
class NoOpAttention(NoOp):
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache: bool = False,
*args,
**kwargs) -> Union[int, Tuple[int, None]]:
out = super().forward(hidden_states=hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
*args,
**kwargs)
if use_cache:
return out, None
return out
class LinearAttention(ColumnLinear):
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache: bool = False,
*args,
**kwargs) -> Union[Tensor, Tuple[Tensor, None]]:
out = super().forward(x=hidden_states,
lora_runtime_params=None,
lora_hidden_state=None)
if use_cache:
return out, None
return out
class LinearFFN(ColumnLinear):
def forward(self,
hidden_states,
lora_layer_params=None,
all_reduce_params: Optional[AllReduceParams] = None) -> Tensor:
return super().forward(x=hidden_states,
lora_runtime_params=None,
lora_hidden_state=None)
NoOpFFN = NoOp
NoOpLayerNorm = NoOp
class DeciLMDecoderLayer(Module):
def __init__(self, config: DeciConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
self.local_layer_idx = layer_idx - layers_range[0]
self.layer_config = self.config.get_layer_config(self.layer_idx)
self._init_attention()
self._init_ffn()
@property
def input_layernorm_was_fused(self) -> bool:
"""
The previous layer ran our input_layernorm for us if:
1. The reduce_fusion plugin is enabled and
2. We are not the first local model layer and
3. The previous layer is an MLP layer
"""
return default_net(
).plugin_config.reduce_fusion and self.local_layer_idx > 0 and self.config.get_layer_config(
self.layer_idx -
1).is_mlp_layer and self.needs_input_layernorm_fusion
@property
def needs_input_layernorm_fusion(self) -> bool:
"""
This layer needs the previous layer to perform input_layernorm fusion if:
1. The reduce_fusion plugin is enabled and
2. This is not a NOOP attention layer (otherwise it has no input_layernorm)
"""
return default_net(
).plugin_config.reduce_fusion and not self.layer_config.is_noop_attention_layer
@property
def can_fuse_post_layernorm(self) -> bool:
"""
This layer can fuse attention and post_layernorm if:
1. The reduce_fusion plugin is enabled and
2. It is an attention layer and
3. It is not a NOOP FFN layer (othrewise it has no post_layernorm)
"""
return default_net(
).plugin_config.reduce_fusion and self.layer_config.is_attention_layer and not self.layer_config.is_noop_ffn_layer
@property
def can_fuse_input_layernorm(self) -> bool:
"""
This layer can run the next layer's input_layernorm if:
1. The reduce_fusion plugin is enable and
2. It is an MLP layer
"""
return default_net(
).plugin_config.reduce_fusion and self.layer_config.is_mlp_layer
def _init_attention(self) -> None:
"""
Initialize some attention alternative
"""
# normal attention
if self.layer_config.is_attention_layer:
# according to recurrentgemma, len(layer_types) can be less than num_hidden_layers
# in this case, the list should wrap-around
# for example, if layer_types = ["attention", "recurrent", "recurrent"], and we have 5 layers, we get:
# layer 0 ==> attention
# layer 1 ==> recurrent
# layer 2 ==> recurrent
# layer 3 ==> attention
# layer 4 ==> recurrent
# we check which layers are local to our rank
layers_range = self.config.mapping.pp_layers(
self.config.num_hidden_layers)
# then take the size of layer_types in the config
layer_type_len = len(self.config.layer_types)
# collect the layer types of all the local layers
local_layer_types = [
self.config.layer_types[layer_id % layer_type_len]
for layer_id in layers_range
]
# and see how many of them are attention layers to determine our local attention layer idx
local_attn_layer_idx = local_layer_types[:self.
local_layer_idx].count(
"attention")
# Iterate over all local layer configs, getting num_kv_heads of the attention ones
num_kv_heads_per_local_layer = [
layer_config.attention.num_key_value_heads for layer_config in
[self.config.layer_configs[idx] for idx in layers_range]
if layer_config.is_attention_layer
]
# adjust num heads according to tp size
num_kv_heads_per_local_layer = [
(nheads + self.config.mapping.tp_size - 1) //
self.config.mapping.tp_size
for nheads in num_kv_heads_per_local_layer
]
nheads_tp = (self.layer_config.attention.num_key_value_heads +
self.config.mapping.tp_size -
1) // self.config.mapping.tp_size
self.input_layernorm = RmsNorm(
normalized_shape=self.config.hidden_size,
eps=self.config.norm_epsilon,
dtype=self.config.dtype,
)
self.attention = Attention(
local_layer_idx=local_attn_layer_idx,
hidden_size=self.config.hidden_size,
attention_head_size=self.config.head_size,
num_attention_heads=self.config.num_attention_heads,
num_kv_heads=self.layer_config.attention.num_key_value_heads,
max_position_embeddings=self.config.max_position_embeddings,
dtype=self.config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=False,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=self.config.rotary_base,
rotary_embedding_scaling=self.config.rotary_scaling,
tp_group=self.config.mapping.tp_group,
tp_size=self.config.mapping.tp_size,
tp_rank=self.config.mapping.tp_rank,
quant_mode=self.config.quant_mode)
elif self.layer_config.is_noop_attention_layer:
self.input_layernorm = NoOpLayerNorm()
self.attention = NoOpAttention()
elif self.layer_config.is_linear_attention_layer:
self.input_layernorm = RmsNorm(
normalized_shape=self.config.hidden_size,
eps=self.config.norm_epsilon,
dtype=self.config.dtype,
)
self.attention = LinearAttention(
in_features=self.config.hidden_size,
out_features=self.config.hidden_size,
bias=False,
dtype=self.config.dtype,
tp_group=self.config.mapping.tp_group,
tp_size=self.config.mapping.tp_size,
gather_output=True)
else:
raise NotImplementedError(
f"Attention of type {str(self.layer_config.attention.impl)} is not implemented"
)
def _init_ffn(self) -> None:
"""
Initialize some ffn alternative
"""
if self.layer_config.is_mlp_layer:
intermediate_size = self.layer_config.ffn.intermediate_size or self.config.intermediate_size
mlp_hidden_size = intermediate_size or self.config.hidden_size * 4
self.post_layernorm = RmsNorm(
normalized_shape=self.config.hidden_size,
eps=self.config.norm_epsilon,
dtype=self.config.dtype,
)
self.ffn = GatedMLP(
hidden_size=self.config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=self.config.hidden_act,
bias=False,
dtype=self.config.dtype,
tp_group=self.config.mapping.tp_group,
tp_size=self.config.mapping.tp_size,
quant_mode=self.config.quant_mode,
)
elif self.layer_config.is_noop_ffn_layer:
self.post_layernorm = NoOpLayerNorm()
self.ffn = NoOpFFN()
elif self.layer_config.is_linear_ffn_layer:
self.post_layernorm = RmsNorm(
normalized_shape=self.config.hidden_size,
eps=self.config.norm_epsilon,
dtype=self.config.dtype,
)
self.ffn = LinearFFN(in_features=self.config.hidden_size,
out_features=self.config.hidden_size,
bias=False,
dtype=self.config.dtype,
tp_group=self.config.mapping.tp_group,
tp_size=self.config.mapping.tp_size,
gather_output=True)
else:
raise NotImplementedError(
f"FFN of type {str(self.layer_config.ffn.impl)} is not implemented"
)
def forward(self,
hidden_states: Tensor | Tuple[Tensor, Tensor],
attention_mask: Optional[Tensor] = None,
use_cache: bool = False,
spec_decoding_params=None,
kv_cache_params: Optional[KeyValueCacheParams] = None,
attention_params: Optional[AttentionParams] = None,
lora_layer_params: Optional[LoraParams] = None,
next_layer_input_layernorm_args: Optional[Tuple[Tensor,
float]] = None):
if self.input_layernorm_was_fused:
# previous layer already performed our layer norm
assert isinstance(hidden_states, tuple)
hidden_states, residual = hidden_states
else:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self.can_fuse_post_layernorm:
all_reduce_params = AllReduceParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM,
residual=residual,
norm_weight=self.post_layernorm.weight.value,
eps=self.post_layernorm.eps)
else:
all_reduce_params = None
attention_output = self._run_attention(
hidden_states=hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
all_reduce_params=all_reduce_params)
if use_cache:
attention_output, present_kv = attention_output
else:
present_kv = None
if self.can_fuse_post_layernorm:
hidden_states, residual = attention_output
else:
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
if next_layer_input_layernorm_args is not None:
assert self.can_fuse_input_layernorm
norm_weight, eps = next_layer_input_layernorm_args
all_reduce_params = AllReduceParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM,
residual=residual,
norm_weight=norm_weight,
eps=eps)
hidden_states = self._run_ffn(hidden_states,
lora_layer_params=lora_layer_params,
all_reduce_params=all_reduce_params)
else:
hidden_states = self._run_ffn(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
return DeciLMLayerOutput(hidden_states=hidden_states,
present_kv=present_kv)
def _run_attention(
self,
hidden_states: Tensor,
attention_mask: Optional[Tensor] = None,
use_cache: bool = False,
spec_decoding_params=None,
kv_cache_params: Optional[KeyValueCacheParams] = None,
attention_params: Optional[AttentionParams] = None,
lora_layer_params: Optional[LoraParams] = None,
all_reduce_params: Optional[AllReduceParams] = None
) -> Union[Tensor, Tuple[Tensor, None]]:
"""
Ideally, this functionality would be encapsulated in a LinearAttention class, but during
FP8 and lower quantization, our linear classes get overrun by ModelOpt, thus we must
control the attention inputs at the DecoderLayer level.
"""
if self.layer_config.is_linear_attention_layer:
out = self.attention(hidden_states)
return out, None if use_cache else out
else:
if not self.layer_config.is_attention_layer:
assert all_reduce_params is None, f"Layer with attention of type {self.layer_config.attention.impl} can't do reduce_fusion"
return self.attention(hidden_states=hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
all_reduce_params=all_reduce_params)
def _run_ffn(self,
hidden_states,
lora_layer_params=None,
all_reduce_params: Optional[AllReduceParams] = None):
"""
Ideally, this functionality would be encapsulated in a LinearMLP class, but during
FP8 and lower quantization, our linear classes get overrun by ModelOpt, thus we must
control the MLP inputs at the DecoderLayer level.
"""
if all_reduce_params is not None:
assert self.layer_config.is_mlp_layer, f"Layer with FFN of type {self.layer_config.ffn.impl} can't do reduce_fusion"
if self.layer_config.is_linear_ffn_layer:
return self.ffn(hidden_states)
else:
return self.ffn(hidden_states,
lora_layer_params=lora_layer_params,
all_reduce_params=all_reduce_params)
class DeciLMDecoderLayerList(ModuleList):
def __init__(self, cls: Type[DeciLMDecoderLayer], config: DeciConfig):
self.num_hidden_layers = config.num_hidden_layers
# global indices of local layers
self.layer_list = config.mapping.pp_layers(config.num_hidden_layers)
super().__init__([cls(config, idx) for idx in self.layer_list])
# global indices of local attention layers
self.attention_layer_list = [
self.layer_list[i] for i, layer in enumerate(self)
if layer.layer_config.is_attention_layer
]
def forward(
self,
hidden_states: Tensor,
use_cache: bool,
attention_mask: Optional[Tensor],
kv_cache_params: KeyValueCacheParams,
attention_params: Optional[AttentionParams] = None,
position_ids: Optional[Tensor] = None,
lora_params: Optional[LoraParams] = None,
spec_decoding_params: Optional[SpecDecodingParams] = None,
) -> DeciLMLayerListOutput:
kv_cache_params.fill_none_tensor_list(len(self.layer_list))
presents = []
# put None where we don't have attention layers
pkv_iter = iter(kv_cache_params.past_key_value)
past_key_values = [x for x in pkv_iter]
for layer_idx, (layer, past) in enumerate(zip(self, past_key_values)):
next_layer_input_layernorm_args = None
if default_net().plugin_config.reduce_fusion:
if layer_idx < self.layer_list[-1]:
# this is not the last layer
next_layer = self[layer_idx + 1]
if layer.can_fuse_input_layernorm and next_layer.needs_input_layernorm_fusion:
# this layer can fuse the next layer's input_layernorm
next_layer_input_layernorm_args = (
next_layer.input_layernorm.weight.value,
next_layer.input_layernorm.eps)
layer_out = layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
attention_params=attention_params,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=kv_cache_params.
host_max_attention_window_sizes,
host_sink_token_length=kv_cache_params.
host_sink_token_length,
kv_cache_block_offsets=kv_cache_params.
kv_cache_block_offsets,
host_kv_cache_block_offsets=kv_cache_params.
host_kv_cache_block_offsets,
host_kv_cache_pool_pointers=kv_cache_params.
host_kv_cache_pool_pointers,
host_kv_cache_pool_mapping=kv_cache_params.
host_kv_cache_pool_mapping,
cache_indirection=kv_cache_params.cache_indirection,
),
spec_decoding_params=spec_decoding_params,
use_cache=use_cache,
lora_layer_params=lora_params.get_layer_config(layer_idx)
if lora_params is not None
and lora_params.lora_ranks is not None else None,
next_layer_input_layernorm_args=next_layer_input_layernorm_args)
hidden_states = layer_out.hidden_states
if use_cache and layer_out.present_kv is not None:
presents.append(layer_out.present_kv)
return DeciLMLayerListOutput(hidden_states=hidden_states,
present_kvs=presents)
class DeciLMModel(Module):
def __init__(self, config: DeciConfig) -> None:
super().__init__()
init_all_reduce_helper()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
# first rank in pipeline-parallel handles token embedding
assert config.vocab_size is not None
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.position_embedding_type = config.position_embedding_type
self.layers = DeciLMDecoderLayerList(DeciLMDecoderLayer, config)
if self.mapping.is_last_pp_rank():
# last rank in pipeline-parallel handles final norm
self.ln_f = RmsNorm(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype,
)
def _vocab_embedding(self,
input_ids: Tensor,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None) -> Tensor:
# prompt tuning
ptuning_args = ([
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else [])
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
return hidden_states
def forward(
self,
input_ids,
position_ids=None,
use_cache: bool = False,
attention_mask: Optional[Tensor] = None,
spec_decoding_params=None,
kv_cache_params: Optional[KeyValueCacheParams] = None,
attention_params: Optional[AttentionParams] = None,
hidden_states: Optional[Tensor] = None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params: Optional[LoraParams] = None,
) -> DeciLMLayerListOutput:
if self.mapping.is_first_pp_rank():
# first pipeline rank ==> do prompt embedding
hidden_states = self._vocab_embedding(
input_ids=input_ids,
prompt_embedding_table=prompt_embedding_table,
prompt_tasks=prompt_tasks,
prompt_vocab_size=prompt_vocab_size)
else:
# receive hidden states from prior rank in the pipeline
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
layers_out = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
spec_decoding_params=spec_decoding_params,
)
if self.mapping.is_last_pp_rank():
# last pipeline rank ==> do final norm
hidden_states = self.ln_f(layers_out.hidden_states)
else:
# send hidden states to next rank in the pipeline
hidden_states = send(layers_out.hidden_states,
self.mapping.next_pp_rank())
return DeciLMLayerListOutput(hidden_states=hidden_states,
present_kvs=layers_out.present_kvs)
class DeciLMForCausalLM(DecoderModelForCausalLM):
config_class = DeciConfig
def __init__(self, config: DeciConfig):
transformer = DeciLMModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
# last pipeline rank needs to do calculate logits
lm_head = ColumnLinear(
config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True,
)
else:
lm_head = None
super().__init__(config, transformer, lm_head)
# Create constant attention parameters to be reused by all layers.
Attention.create_attention_const_params(self, config)
self.position_embedding_type = config.position_embedding_type
@classmethod
def from_hugging_face(cls,
hf_model_or_dir: Union[
str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
load_by_shard: bool = False,
load_model_on_cpu: bool = False,
trust_remote_code: bool = True,
**kwargs) -> "DeciLMForCausalLM":
import transformers
# TODO(oargov): add support for these
assert not load_by_shard, "load_by_shard is not implemented yet"
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_config_or_dir = hf_model_or_dir.config
else:
hf_config_or_dir = hf_model_or_dir
config = DeciConfig.from_hugging_face(
hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
trust_remote_code=trust_remote_code,
**kwargs)
if use_preloading:
assert not load_by_shard
weights = load_weights_from_hf_model(hf_model_or_dir, config)
elif has_safetensors(
hf_model_or_dir) and not config.quant_mode.has_any_quant():
weights = load_weights_from_hf_safetensors(hf_model_or_dir, config)
else:
hf_model = transformers.AutoModelForCausalLM.from_pretrained(
hf_model_or_dir,
device_map='auto' if not load_model_on_cpu else 'cpu',
dtype=dtype,
trust_remote_code=trust_remote_code,
)
weights = load_weights_from_hf_model(hf_model, config)
preprocess_weights(weights, config)
model = DeciLMForCausalLM(config)
model.load(weights)
return model
@classmethod
def from_checkpoint(cls,
ckpt_dir: str,
rank: Optional[int] = None,
config: Optional["PretrainedConfig"] = None):
return super().from_checkpoint(
ckpt_dir,
rank,
config,
preprocess_weights_hook=
update_weights_following_modelopt_optimization,
)
def forward(
self,
input_ids: Tensor,
position_ids: Optional[Tensor] = None,
use_cache: bool = False,
last_token_ids: Optional[Tensor] = None,
attention_mask: Optional[Tensor] = None,
kv_cache_params: Optional[KeyValueCacheParams] = None,
attention_params: Optional[AttentionParams] = None,
hidden_states: Optional[Tensor] = None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params: Optional[LoraParams] = None,
spec_decoding_params=None,
):
# fill attention params.
attention_params = Attention.fill_attention_params(
self, attention_params)
model_out = self.transformer.forward(
input_ids=input_ids,
position_ids=position_ids,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
hidden_states=hidden_states,
prompt_embedding_table=prompt_embedding_table,
prompt_tasks=prompt_tasks,
prompt_vocab_size=prompt_vocab_size,
spec_decoding_params=spec_decoding_params)
hidden_states = model_out.hidden_states
if self.config.mapping.is_last_pp_rank():
hidden_states = gather_last_token_logits(
hidden_states,
last_token_ids,
default_net().plugin_config.remove_input_padding,
)
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output("logits", self.config.logits_dtype)
else:
hidden_states.mark_output("hidden_states_output", self.config.dtype)
if use_cache and not default_net().plugin_config.paged_kv_cache:
presents = model_out.present_kvs
for i, present in zip(self.transformer.layers.attention_layer_list,
presents):
present.mark_output(f"present_key_value_{i}",
self.config.kv_dtype)
if self.config.mapping.is_last_pp_rank():
return (lm_logits, presents, hidden_states)
return (hidden_states, presents)
else:
if self.config.mapping.is_last_pp_rank():
return lm_logits, hidden_states
return hidden_states
def prepare_attention_inputs(
self,
*,
max_batch_size: int,
max_beam_width: int,
max_input_len: int,
max_seq_len: int,
num_kv_heads: int,
head_size: int,
num_layers: int,
kv_dtype: str,
kv_cache_type: KVCacheType,
num_profiles: int = 1,
enable_ctx_gen_opt_profiles: bool = False,
remove_input_padding: bool = False,
use_gpt_attention_plugin: bool = False,
paged_kv_cache: bool = False,
tokens_per_block: int = 32,
mapping: Mapping = Mapping(),
use_cache: bool = True,
streamingllm: bool = False,
attn_layer_idx: Optional[List[int]] = None,
opt_batch_size: Optional[int] = None,
num_kv_heads_per_layer: Optional[List[int]] = None):
if attn_layer_idx is None:
attn_layer_idx, num_kv_heads_per_layer = [], []
for layer_idx in range(self.config.num_hidden_layers):
layer_config = self.config.get_layer_config(layer_idx)
if layer_config.is_attention_layer:
attn_layer_idx.append(layer_idx)
num_kv_heads_per_layer.append(
layer_config.attention.num_key_value_heads)
attention_inputs = super().prepare_attention_inputs(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
num_kv_heads=num_kv_heads,
head_size=head_size,
num_layers=num_layers,
kv_dtype=kv_dtype,
num_profiles=num_profiles,
kv_cache_type=kv_cache_type,
enable_ctx_gen_opt_profiles=enable_ctx_gen_opt_profiles,
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
tokens_per_block=tokens_per_block,
mapping=mapping,
streamingllm=streamingllm,
attn_layer_idx=attn_layer_idx,
opt_batch_size=opt_batch_size,
num_kv_heads_per_layer=num_kv_heads_per_layer)
return attention_inputs