TensorRT-LLMs/tensorrt_llm/models/gptj/convert.py

206 lines
8.2 KiB
Python

import time
from typing import Dict, Optional, Tuple
import torch
from tensorrt_llm.quantization import QuantAlgo
from .config import GPTJConfig
def split(weight: torch.Tensor,
tp_size: int,
rank: int = 0,
dim: int = 0) -> torch.Tensor:
if tp_size == 1:
return weight
elif weight.ndim == 1:
return torch.chunk(weight, tp_size)[rank].contiguous()
else:
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
dim: int) -> torch.Tensor:
return split(weight, tp_size, rank, dim=dim)
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.weight' not in params:
return None
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> torch.Tensor:
if f'{prefix}.bias' not in params:
return None
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
dtype: torch.dtype) -> Tuple[torch.Tensor]:
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
def get_tllm_linear_weight(
weight: torch.Tensor,
prefix: str,
bias: Optional[torch.Tensor] = None,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[f'{prefix}.weight'] = processed_torch_weights
results[f'{prefix}.per_channel_scale'] = torch_weight_scales
else:
results[f'{prefix}.weight'] = weight.contiguous()
if bias is not None:
results[f'{prefix}.bias'] = bias
return results
def get_tllm_param(
param: torch.Tensor,
name: str,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8
) -> Dict[str, torch.Tensor]:
results = {}
if name.endswith('.weight') and use_weight_only:
v = param.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[name] = processed_torch_weights
results[name.replace('weight',
'per_channel_scale')] = torch_weight_scales
else:
results[name] = param
return results
def load_weights_from_hf_model(hf_model, config: GPTJConfig):
quant_algo = config.quantization.quant_algo
use_weight_only = quant_algo in [QuantAlgo.W8A16, QuantAlgo.W4A16]
if quant_algo == QuantAlgo.W8A16:
plugin_weight_only_quant_type = torch.int8
elif quant_algo == QuantAlgo.W4A16:
plugin_weight_only_quant_type = torch.quint4x2
else:
plugin_weight_only_quant_type = None
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, config.dtype)
num_hidden_layers = config.num_hidden_layers
mapping = config.mapping
layers_range = mapping.pp_layers(num_hidden_layers)
for l in layers_range:
prefix = f'transformer.h.{l}'
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
# Attention QKV (no bias)
q_weight = get_weight(model_params, f'{prefix}.attn.q_proj', dtype)
k_weight = get_weight(model_params, f'{prefix}.attn.k_proj', dtype)
v_weight = get_weight(model_params, f'{prefix}.attn.v_proj', dtype)
q_w = split_matrix(q_weight, mapping.tp_size, mapping.tp_rank, dim=0)
k_w = split_matrix(k_weight, mapping.tp_size, mapping.tp_rank, dim=0)
v_w = split_matrix(v_weight, mapping.tp_size, mapping.tp_rank, dim=0)
qkv_w = torch.concatenate([q_w, k_w, v_w], dim=0)
weights.update(
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv', None,
use_weight_only,
plugin_weight_only_quant_type))
# Attention dense (not bias)
attn_dense_weight = get_weight(model_params, f'{prefix}.attn.out_proj',
dtype)
attn_dense_w = split_matrix(attn_dense_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
weights.update(
get_tllm_linear_weight(attn_dense_w, f'{tllm_prex}.attention.dense',
None, use_weight_only,
plugin_weight_only_quant_type))
# MLP fc_in (with bias)
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.fc_in', dtype)
mlp_fc_w = split_matrix(mlp_fc_weight,
mapping.tp_size,
mapping.tp_rank,
dim=0)
mlp_fc_b = split_matrix(mlp_fc_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights.update(
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc', mlp_fc_b,
use_weight_only,
plugin_weight_only_quant_type))
# MLP fc_out (with bias)
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, f'{prefix}.mlp.fc_out', dtype)
mlp_proj_w = split_matrix(mlp_proj_weight,
mapping.tp_size,
mapping.tp_rank,
dim=1)
# Only rank0 will get bias
if mapping.tp_size > 1 and mapping.tp_rank > 0:
mlp_proj_bias = torch.zeros(mlp_proj_weight.shape[0],
dtype=mlp_proj_weight.dtype)
weights.update(
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, f'{prefix}.ln_1', dtype)
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
weights[f'{tllm_prex}.input_layernorm.bias'] = input_ln_bias
if mapping.is_first_pp_rank():
# Embedding
embed_w = get_weight(model_params, 'transformer.wte', dtype)
if config.use_parallel_embedding:
embed_w = split_matrix(embed_w,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights['transformer.vocab_embedding.weight'] = embed_w
if mapping.is_last_pp_rank():
# lm_head weight and bias
lm_head_w, ln_head_bias = get_weight_and_bias(model_params, 'lm_head',
dtype)
weights['lm_head.weight'] = split_matrix(lm_head_w,
mapping.tp_size,
mapping.tp_rank,
dim=0)
weights['lm_head.bias'] = split_matrix(ln_head_bias,
mapping.tp_size,
mapping.tp_rank,
dim=0)
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
dtype)
# ln_f weight and bias
weights['transformer.ln_f.weight'] = ln_f_w
if ln_f_b is not None:
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights