mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
203 lines
7.7 KiB
Python
203 lines
7.7 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Optional, Union
|
|
|
|
from ..._utils import pad_vocab_size
|
|
from ...functional import PositionEmbeddingType, Tensor, allreduce
|
|
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
|
|
Embedding, LayerNorm)
|
|
from ...mapping import Mapping
|
|
from ...module import Module
|
|
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
|
|
check_share_embedding)
|
|
from .config import GPTJConfig
|
|
from .convert import load_weights_from_hf_model
|
|
|
|
|
|
class GPTJDecoderLayer(Module):
|
|
|
|
def __init__(self, config: GPTJConfig, layer_idx: int):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.config = config
|
|
|
|
hidden_size = config.hidden_size
|
|
num_attention_heads = config.num_attention_heads
|
|
rotary_dim = config.rotary_dim
|
|
dtype = config.dtype
|
|
tp_size = config.mapping.tp_size
|
|
tp_rank = config.mapping.tp_rank
|
|
layernorm_epsilon = config.norm_epsilon
|
|
|
|
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
|
|
eps=layernorm_epsilon,
|
|
dtype=dtype)
|
|
|
|
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
|
|
local_layer_idx = layer_idx - layers_range[0]
|
|
self.attention = Attention(
|
|
local_layer_idx=local_layer_idx,
|
|
hidden_size=hidden_size,
|
|
num_attention_heads=num_attention_heads,
|
|
rotary_embedding_percentage=rotary_dim /
|
|
(hidden_size // num_attention_heads),
|
|
max_position_embeddings=config.max_position_embeddings,
|
|
attention_mask_type=AttentionMaskType.causal,
|
|
dtype=dtype,
|
|
tp_group=None,
|
|
tp_size=tp_size,
|
|
tp_rank=tp_rank,
|
|
bias=False,
|
|
position_embedding_type=PositionEmbeddingType.rope_gptj,
|
|
quant_mode=config.quant_mode)
|
|
|
|
self.mlp = MLP(hidden_size=hidden_size,
|
|
ffn_hidden_size=hidden_size * 4,
|
|
hidden_act=config.hidden_act,
|
|
dtype=dtype,
|
|
bias=True,
|
|
tp_group=None,
|
|
tp_size=tp_size,
|
|
quant_mode=config.quant_mode)
|
|
|
|
def forward(self,
|
|
hidden_states: Tensor,
|
|
attention_mask=None,
|
|
use_cache=False,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
assert isinstance(hidden_states, Tensor)
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
attention_output = self.attention(hidden_states,
|
|
attention_mask=attention_mask,
|
|
use_cache=use_cache,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
attention_output, presents = attention_output
|
|
attention_output = attention_output
|
|
|
|
feed_forward_hidden_states = self.mlp(hidden_states)
|
|
hidden_states = attention_output + feed_forward_hidden_states
|
|
if self.config.mapping.tp_size > 1:
|
|
hidden_states = allreduce(hidden_states,
|
|
self.config.mapping.tp_group)
|
|
hidden_states = hidden_states + residual
|
|
|
|
if use_cache:
|
|
return (hidden_states, presents)
|
|
return hidden_states
|
|
|
|
|
|
class GPTJModel(Module):
|
|
|
|
def __init__(self, config: GPTJConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
if config.mapping.is_first_pp_rank():
|
|
self.vocab_embedding = Embedding(config.vocab_size,
|
|
config.hidden_size,
|
|
dtype=config.dtype)
|
|
self.layers = DecoderLayerList(GPTJDecoderLayer, config)
|
|
if config.mapping.is_last_pp_rank():
|
|
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
|
|
dtype=config.dtype)
|
|
|
|
def forward(self,
|
|
input_ids: Tensor,
|
|
position_ids=None,
|
|
use_cache=False,
|
|
attention_mask=None,
|
|
kv_cache_params=None,
|
|
attention_params=None):
|
|
|
|
hidden_states = self.vocab_embedding(input_ids)
|
|
|
|
hidden_states = self.layers(hidden_states,
|
|
use_cache=use_cache,
|
|
attention_mask=attention_mask,
|
|
kv_cache_params=kv_cache_params,
|
|
attention_params=attention_params)
|
|
|
|
if use_cache:
|
|
hidden_states, presents = hidden_states
|
|
|
|
hidden_states = self.ln_f(hidden_states)
|
|
|
|
if use_cache:
|
|
return (hidden_states, tuple(presents))
|
|
return hidden_states
|
|
|
|
|
|
class GPTJForCausalLM(DecoderModelForCausalLM):
|
|
config_class = GPTJConfig
|
|
|
|
def __init__(self, config: GPTJConfig):
|
|
transformer = GPTJModel(config)
|
|
vocab_size_padded = pad_vocab_size(config.vocab_size,
|
|
config.mapping.tp_size)
|
|
if config.mapping.is_last_pp_rank():
|
|
lm_head = ColumnLinear(config.hidden_size,
|
|
vocab_size_padded,
|
|
bias=True,
|
|
dtype=config.dtype,
|
|
tp_group=config.mapping.tp_group,
|
|
tp_size=config.mapping.tp_size,
|
|
gather_output=True)
|
|
else:
|
|
lm_head = None
|
|
super().__init__(config, transformer, lm_head)
|
|
|
|
@classmethod
|
|
def from_hugging_face(
|
|
cls,
|
|
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
|
|
dtype: str = 'auto',
|
|
mapping: Optional[Mapping] = None,
|
|
quant_config=None,
|
|
**kwargs):
|
|
import transformers
|
|
use_preloading = isinstance(hf_model_or_dir,
|
|
transformers.PreTrainedModel)
|
|
if use_preloading:
|
|
hf_model = hf_model_or_dir
|
|
hf_config_or_dir = hf_model.config
|
|
else:
|
|
hf_model_dir = hf_model_or_dir
|
|
hf_config_or_dir = hf_model_or_dir
|
|
|
|
config = GPTJConfig.from_hugging_face(hf_config_or_dir,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**kwargs)
|
|
|
|
if not use_preloading:
|
|
hf_model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
hf_model_dir, torch_dtype='auto', trust_remote_code=True)
|
|
weights = load_weights_from_hf_model(hf_model, config)
|
|
|
|
check_share_embedding(weights, config)
|
|
model = GPTJForCausalLM(config)
|
|
model.load(weights)
|
|
return model
|