TensorRT-LLMs/tests/functional/test_masked_scatter.py
Kaiyu Xie 4bb65f216f
Update TensorRT-LLM (#1274)
* Update TensorRT-LLM

---------

Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
2024-03-12 18:15:52 +08:00

93 lines
3.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import numpy as np
import torch
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import unittest_name_func
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([
('int32', (1, )),
('int32', (256, )),
('int32', (256, )),
('float32', (3, 16)),
('float32', (3, 16)),
('float32', (3, 16)),
('float16', (5, 6, 8)),
('float16', (5, 6, 8)),
('float16', (5, 6, 8)),
],
name_func=unittest_name_func)
def test_masked_select(self, dtype, input_shape):
dtype = 'float32'
mask_shape = input_shape
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mask_data = torch.randint(2, mask_shape).to(torch.bool)
source_shape = (mask_data.nonzero().shape[0])
source_data = torch.rand(
source_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='mask',
shape=mask_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt('bool'))
source = Tensor(name='source',
shape=source_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.masked_scatter(x, y,
source).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(fp16=(dtype == 'float16')))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(
feed_dict={
'input': input_data.numpy(),
'mask': mask_data.numpy(),
'source': source_data.numpy()
})
input_data = input_data.cuda()
ref = input_data.masked_scatter_(mask_data.cuda(), source_data.cuda())
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)