TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/iGptDecoderBatched.h
Robin Kobus b7a38feb14
chore: Clean up cpp runtime (#3537)
* add space in test output

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* perf: reduce executor lock scope

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Move TokenRangeRetentionConfig implementation to cpp file

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fix: Improve finished steps handling for external draft tokens

- Fixed a bug where the whole finished steps tensor was being zeroes instead of the slices.
- Replaced the creation of a temporary tensor for finished steps with a direct slice from the input tensor, improving efficiency and readability.
- Updated the tensor management logic to streamline the process of setting zero values for finished steps during batch processing.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Clean up includes

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-04-15 16:06:14 +08:00

142 lines
4.8 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/cudaEvent.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/eagleBuffers.h"
#include "tensorrt_llm/runtime/explicitDraftTokensBuffers.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <memory>
#include <vector>
namespace tensorrt_llm::batch_manager
{
class LlmRequest;
}
namespace tensorrt_llm::runtime
{
class SamplingConfig;
namespace decoder
{
class DecoderState;
}
namespace decoder_batch
{
class Input
{
public:
using TensorConstPtr = ITensor::SharedConstPtr;
using TensorPtr = ITensor::SharedPtr;
explicit Input(std::vector<std::vector<TensorConstPtr>> const& logits, SizeType32 maxDecoderSteps)
: logits{logits}
, maxDecoderSteps{maxDecoderSteps}
{
TLLM_CHECK_WITH_INFO(
logits.size() == static_cast<size_t>(maxDecoderSteps), "logits vector size does not match maxDecoderSteps");
}
explicit Input(std::vector<TensorConstPtr> const& logits)
: Input{{logits}, 1}
{
}
//! Mandatory parameters
// FIXME: remove first dimension of tensors
//! [maxDecoderSteps][batchSize][1, beamWidth, vocabSizePadded], on gpu
std::vector<std::vector<TensorConstPtr>> logits;
//! Maximum number of decoding tokens of active slots
SizeType32 maxDecoderSteps;
//! Batch of active decoder slots, sorted by slots, [maxDecoderSteps][batchSize]
std::vector<TensorPtr> batchSlots;
//! Filled with slots in request order, [batchSize]
TensorPtr batchSlotsRequestOrder;
//! For beam search
//! Indices into KV cache of different rays within one beam
TensorPtr cacheIndirection; // [maxBatchSize, maxBeamWidth, maxSeqLen], on gpu
//! [maxBatchSize][maxAcceptedDraftTokensPerStep][maxDraftTokens + 1, vocabSizePadded]
std::vector<std::vector<TensorPtr>> predictedDraftLogits;
//! Explicit draft tokens data
std::optional<ExplicitDraftTokensBuffers::EngineOutputs> explicitDraftTokensInputs;
std::optional<ExplicitDraftTokensBuffers::EngineInputs> explicitDraftTokensLastInputs;
//! Eagle data
std::optional<EagleBuffers::EngineOutputs> eagleInputs;
std::optional<EagleBuffers::Inputs> eagleLastInputs;
};
class Output
{
public:
using TensorPtr = std::shared_ptr<ITensor>;
Output() = default;
// parameters for beam search
TensorPtr cacheIndirection; // [batchSize, maxBeamWidth, maxSeqLen], mandatory in beam search, on gpu
};
} // namespace decoder_batch
//! GPT decoder class with support for in-flight batching
class IGptDecoderBatched
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using LlmRequestPtr = std::shared_ptr<tensorrt_llm::batch_manager::LlmRequest>;
using RequestVector = std::vector<LlmRequestPtr>;
using TensorPtr = std::shared_ptr<ITensor>;
//! @brief Setup the decoder before calling `forward()`
virtual void setup(executor::DecodingMode const& mode, SizeType32 maxBatchSize, SizeType32 maxBeamWidth,
SizeType32 maxAttentionWindow, SizeType32 sinkTokenLength, SizeType32 maxSequenceLength,
SizeType32 maxTokensPerStep, nvinfer1::DataType dtype, ModelConfig const& modelConfig,
WorldConfig const& worldConfig)
= 0;
//! @brief Disable Lookahead decoding.
virtual void disableLookahead(RequestVector const& genRequests, TensorPtr const& batchSlots) = 0;
//! @brief Run one step for all requests without blocking the host process and return the token for synchronization.
virtual CudaEvent forwardAsync(decoder_batch::Output& output, decoder_batch::Input const& input) = 0;
//! @brief Run one step for all requests and wait for completion on the host.
virtual void forward(decoder_batch::Output& output, decoder_batch::Input const& input) = 0;
//! @brief Gather final beam search results for request `batchIdx`.
//! Result will only be available after event returned
[[nodiscard]] virtual CudaEvent finalize(decoder::DecoderState const& decoderState, SizeType32 batchSlot,
SamplingConfig const& samplingConfig, bool streaming) const
= 0;
protected:
IGptDecoderBatched() = default;
virtual ~IGptDecoderBatched() = default;
};
} // namespace tensorrt_llm::runtime