TensorRT-LLMs/cpp/tensorrt_llm/plugins/lowLatencyGemmSwigluPlugin/lowLatencyGemmSwigluPlugin.cpp
Yuan Tong 4b6c19737b
feat: support add internal cutlass kernels as subproject (#3658)
Signed-off-by: Yuan Tong <13075180+tongyuantongyu@users.noreply.github.com>
2025-05-06 11:35:07 +08:00

469 lines
15 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lowLatencyGemmSwigluPlugin.h"
#include "low_latency_gemm_swiglu.h"
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/cudaFp8Utils.h"
#include "tensorrt_llm/common/logger.h"
#include <NvInferRuntime.h>
#include <NvInferRuntimeBase.h>
#include <NvInferRuntimePlugin.h>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <numeric>
#include <optional>
#include <vector>
using namespace nvinfer1;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels::internal_cutlass_kernels;
using tensorrt_llm::plugins::LowLatencyGemmSwigluPluginCreator;
using tensorrt_llm::plugins::LowLatencyGemmSwigluPlugin;
using tensorrt_llm::plugins::LowLatencyGemmSwigluPluginProfiler;
using tensorrt_llm::plugins::read;
using tensorrt_llm::plugins::write;
static char const* LOW_LATENCY_GEMM_SWIGLU_PLUGIN_VERSION{"1"};
static char const* LOW_LATENCY_GEMM_SWIGLU_PLUGIN_NAME{"LowLatencyGemmSwiglu"};
PluginFieldCollection LowLatencyGemmSwigluPluginCreator::mFC{};
std::vector<nvinfer1::PluginField> LowLatencyGemmSwigluPluginCreator::mPluginAttributes;
using FP8Type = __nv_fp8_e4m3;
static std::optional<float> getFloatEnv(char const* name)
{
char const* const env = std::getenv(name);
if (env == nullptr)
{
return std::nullopt;
}
try
{
float value = std::stof(env);
return {value};
}
catch (std::invalid_argument const& e)
{
return std::nullopt;
}
catch (std::out_of_range const& e)
{
return std::nullopt;
}
};
static size_t getBytePerElement(nvinfer1::DataType type)
{
size_t bpe;
if (type == nvinfer1::DataType::kFLOAT)
{
bpe = 4;
}
else if (type == nvinfer1::DataType::kHALF || type == nvinfer1::DataType::kBF16)
{
bpe = 2;
}
else if (type == nvinfer1::DataType::kINT8 || type == nvinfer1::DataType::kFP8)
{
bpe = 1;
}
else
{
TLLM_THROW("Not recognized/implemented");
}
return bpe;
}
void LowLatencyGemmSwigluPluginProfiler::runTactic(int m, int n, int k,
LowLatencyGemmSwigluPluginProfiler::Config const& tactic, char* workspace, cudaStream_t const& stream)
{
float default_pdl_overlap_ratio = 0.5;
float default_prefetch_ratio = -1.0;
FP8Type* aTmp = reinterpret_cast<FP8Type*>(workspace);
FP8Type* bTmp
= reinterpret_cast<FP8Type*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(aTmp), m * k * sizeof(FP8Type)));
void* dTmp = reinterpret_cast<void*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(bTmp), n * k * sizeof(FP8Type)));
size_t workspaceSize = mRunner->getWorkspaceSize(m, n, k);
char* workspaceTmp = reinterpret_cast<char*>(
nextWorkspacePtr(reinterpret_cast<int8_t*>(dTmp), (n / 2 * m * getBytePerElement(mType))));
mRunner->gemm(aTmp, bTmp, 1.0f, 0.0f, 1.0f, 1.0f, nullptr, dTmp, m, n, k, default_pdl_overlap_ratio,
default_prefetch_ratio, tactic, workspaceTmp, workspaceSize, stream);
}
int LowLatencyGemmSwigluPluginProfiler::getMaxProfileM() const
{
return 32768;
}
void LowLatencyGemmSwigluPluginProfiler::computeTmpSize(size_t maxM, size_t n, size_t k)
{
std::vector<size_t> workspaces = {maxM * k * sizeof(FP8Type), // A
n * k * sizeof(FP8Type), // B
maxM * (n / 2) * getBytePerElement(mType), // D
mRunner->getWorkspaceSize(maxM, n, k)}; // workspace
size_t bytes = calculateTotalWorkspaceSize(workspaces.data(), workspaces.size());
setTmpWorkspaceSizeInBytes(bytes);
}
std::vector<LowLatencyGemmSwigluPluginProfiler::Config> LowLatencyGemmSwigluPluginProfiler::getTactics(
int m, int n, int k) const
{
return mRunner->getConfigs();
}
LowLatencyGemmSwigluPlugin::LowLatencyGemmSwigluPlugin(nvinfer1::DataType type, float scale_output, float scale_d0,
float scale_d1, PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
, mScaleOutput(scale_output)
, mScaleD0(scale_d0)
, mScaleD1(scale_d1)
{
init(type);
}
LowLatencyGemmSwigluPlugin::LowLatencyGemmSwigluPlugin(
void const* data, size_t length, PluginProfilerPtr const& pluginProfiler)
: mPluginProfiler(pluginProfiler)
{
char const *d = reinterpret_cast<char const*>(data), *a = d;
nvinfer1::DataType type;
read(d, type);
read(d, mScaleOutput);
read(d, mScaleD0);
read(d, mScaleD1);
read(d, mDims);
init(type);
mPluginProfiler->deserialize(d, mDims, mGemmId);
TLLM_CHECK_WITH_INFO(d == a + length,
"Expected length (%d) != real length (%d). This is often "
"caused by using different TensorRT-LLM version to build "
"engine and run engine.",
(int) length, (int) (d - a));
}
void LowLatencyGemmSwigluPlugin::init(nvinfer1::DataType type)
{
mType = type;
if (mType == nvinfer1::DataType::kFP8)
{
mLowLatencyGemmSwigluRunner = std::make_shared<CutlassLowLatencyFp8GemmSwigluRunner<__nv_fp8_e4m3>>();
}
else
{
TLLM_THROW("Unsupported data type");
}
mGemmId = GemmIdCore(mDims.n, mDims.k, mType);
}
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* LowLatencyGemmSwigluPlugin::clone() const noexcept
{
auto* plugin = new LowLatencyGemmSwigluPlugin(*this);
return plugin;
}
nvinfer1::DimsExprs LowLatencyGemmSwigluPlugin::getOutputDimensions(
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
{
try
{
TLLM_CHECK(nbInputs == 2);
TLLM_CHECK(outputIndex == 0);
int const nbDimsA = inputs[0].nbDims;
TLLM_CHECK(nbDimsA >= 2);
DimsExprs ret;
ret.nbDims = nbDimsA;
for (int ii = 0; ii < nbDimsA - 1; ++ii)
{
ret.d[ii] = inputs[0].d[ii];
}
ret.d[nbDimsA - 1] = exprBuilder.constant(inputs[1].d[1]->getConstantValue() / 2);
return ret;
}
catch (std::exception const& e)
{
caughtError(e);
}
return DimsExprs{};
}
bool LowLatencyGemmSwigluPlugin::supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
{
switch (pos)
{
case 0:
// activation
return inOut[pos].type == nvinfer1::DataType::kFP8 && inOut[pos].format == TensorFormat::kLINEAR;
case 1:
// weights
// Weights stored in checkpoint must have fp8 type
return inOut[pos].type == nvinfer1::DataType::kFP8 && inOut[pos].format == TensorFormat::kLINEAR;
case 2:
// out
return inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
default:
// Never should be here
TLLM_CHECK(false);
return false;
}
}
void LowLatencyGemmSwigluPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
{
auto const minM = std::accumulate(in[0].min.d, in[0].min.d + in[0].min.nbDims - 1, 1, std::multiplies<int>());
auto const maxM = std::accumulate(in[0].max.d, in[0].max.d + in[0].max.nbDims - 1, 1, std::multiplies<int>());
int const maxK = in[0].max.d[in[0].max.nbDims - 1];
int const maxN = in[1].max.d[1];
int const minK = in[0].min.d[in[0].min.nbDims - 1];
int const minN = in[1].min.d[1];
TLLM_CHECK_WITH_INFO(minN == maxN, "Variable out channels is not allowed");
TLLM_CHECK_WITH_INFO(minK == maxK, "Variable in channels is not allowed");
if (!mDims.isInitialized())
{
mDims = {minM, maxM, maxN, maxK};
}
mGemmId = {maxN, maxK, mType};
mWorkspaceMaxSize = mLowLatencyGemmSwigluRunner->getWorkspaceSize(maxM, maxN, maxK);
}
size_t LowLatencyGemmSwigluPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
{
return mWorkspaceMaxSize;
}
int LowLatencyGemmSwigluPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
cudaStream_t stream) noexcept
{
// input0 activation [M,K] row-major
// input1 weights [K, N] col-major
// output0 [M,N / 2] row-major
int64_t m64 = 1;
for (int ii = 0; ii < inputDesc[0].dims.nbDims - 1; ++ii)
{
m64 *= inputDesc[0].dims.d[ii];
}
int const m = TLLM_INT32_CAST(m64);
int const n = TLLM_INT32_CAST(inputDesc[1].dims.d[1]);
int const k = TLLM_INT32_CAST(inputDesc[0].dims.d[inputDesc[0].dims.nbDims - 1]);
int const wsSize = mLowLatencyGemmSwigluRunner->getWorkspaceSize(m, n, k);
auto const& bestTactic = mPluginProfiler->getBestConfig(m, mGemmId);
TLLM_CHECK_WITH_INFO(bestTactic, "No valid Low Latency GEMM SWIGLU tactic");
auto env_pdl_overlap_ratio = getFloatEnv("TRTLLM_PDL_OVERLAP_RATIO");
auto env_prefetch_ratio = getFloatEnv("TRTLLM_PREFETCH_RATIO");
auto valid_ratio = [](std::optional<float>& env_val, float default_val)
{
if (env_val.has_value())
{
TLLM_CHECK_WITH_INFO(env_val.value() <= 1.0f, "Valid ratio should be less than or equal to 1.0");
return env_val.value();
}
return default_val;
};
float pdl_overlap_ratio = valid_ratio(env_pdl_overlap_ratio, /*default_val=*/0.5);
float prefetch_ratio = valid_ratio(env_prefetch_ratio, /*default_val=*/-1.0);
mLowLatencyGemmSwigluRunner->gemm(const_cast<FP8Type*>(reinterpret_cast<FP8Type const*>(inputs[0])),
const_cast<FP8Type*>(reinterpret_cast<FP8Type const*>(inputs[1])), mScaleOutput, 0.0F, mScaleD0, mScaleD1,
nullptr, outputs[0], m, n, k, pdl_overlap_ratio, prefetch_ratio, *bestTactic,
reinterpret_cast<char*>(workspace), wsSize, stream);
return 0;
}
// IPluginV2Ext Methods
nvinfer1::DataType LowLatencyGemmSwigluPlugin::getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
{
TLLM_CHECK(index == 0);
return mType;
}
// IPluginV2 Methods
char const* LowLatencyGemmSwigluPlugin::getPluginType() const noexcept
{
return LOW_LATENCY_GEMM_SWIGLU_PLUGIN_NAME;
}
char const* LowLatencyGemmSwigluPlugin::getPluginVersion() const noexcept
{
return LOW_LATENCY_GEMM_SWIGLU_PLUGIN_VERSION;
}
int LowLatencyGemmSwigluPlugin::getNbOutputs() const noexcept
{
return 1;
}
int LowLatencyGemmSwigluPlugin::initialize() noexcept
{
configGemm();
return 0;
}
void LowLatencyGemmSwigluPlugin::terminate() noexcept {}
size_t LowLatencyGemmSwigluPlugin::getSerializationSize() const noexcept
{
return sizeof(nvinfer1::DataType) + // dtype
sizeof(float) * 3 + // scales
sizeof(mDims) + mPluginProfiler->getSerializationSize(mGemmId);
}
void LowLatencyGemmSwigluPlugin::serialize(void* buffer) const noexcept
{
char *d = static_cast<char*>(buffer), *a = d;
write(d, mType);
write(d, mScaleOutput);
write(d, mScaleD0);
write(d, mScaleD1);
write(d, mDims);
mPluginProfiler->serialize(d, mGemmId);
TLLM_CHECK(d == a + getSerializationSize());
}
void LowLatencyGemmSwigluPlugin::destroy() noexcept
{
// This gets called when the network containing plugin is destroyed
delete this;
}
void LowLatencyGemmSwigluPlugin::configGemm()
{
mPluginProfiler->profileTactics(mLowLatencyGemmSwigluRunner, mType, mDims, mGemmId);
}
//////////////////////////////////////////////////////////////////////////
LowLatencyGemmSwigluPluginCreator::LowLatencyGemmSwigluPluginCreator()
{
// Fill PluginFieldCollection with PluginField arguments metadata
mPluginAttributes.clear();
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
mPluginAttributes.emplace_back(PluginField("scale_output", nullptr, PluginFieldType::kFLOAT32));
mPluginAttributes.emplace_back(PluginField("scale_d0", nullptr, PluginFieldType::kFLOAT32));
mPluginAttributes.emplace_back(PluginField("scale_d1", nullptr, PluginFieldType::kFLOAT32));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
char const* LowLatencyGemmSwigluPluginCreator::getPluginName() const noexcept
{
return LOW_LATENCY_GEMM_SWIGLU_PLUGIN_NAME;
}
char const* LowLatencyGemmSwigluPluginCreator::getPluginVersion() const noexcept
{
return LOW_LATENCY_GEMM_SWIGLU_PLUGIN_VERSION;
}
PluginFieldCollection const* LowLatencyGemmSwigluPluginCreator::getFieldNames() noexcept
{
return &mFC;
}
IPluginV2* LowLatencyGemmSwigluPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
{
PluginField const* fields = fc->fields;
TLLM_CHECK(fc->nbFields == 4);
nvinfer1::DataType type{};
float scale_output{};
float scale_d0{};
float scale_d1{};
for (int i = 0; i < fc->nbFields; i++)
{
char const* attrName = fields[i].name;
if (!strcmp(attrName, "type_id"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kINT32);
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_output"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_output = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_d0"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_d0 = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
else if (!strcmp(attrName, "scale_d1"))
{
TLLM_CHECK(fields[i].type == PluginFieldType::kFLOAT32);
scale_d1 = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
}
}
try
{
//
// LowLatencyGemmSwigluPluginCreator is unique and shared for an engine generation
// Create plugin profiler with shared tactics map
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/*inference=*/false);
auto* obj = new LowLatencyGemmSwigluPlugin(type, scale_output, scale_d0, scale_d1, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}
IPluginV2* LowLatencyGemmSwigluPluginCreator::deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept
{
try
{
auto pluginProfiler = gemmPluginProfileManager.createGemmPluginProfiler(/*inference=*/true);
auto* obj = new LowLatencyGemmSwigluPlugin(serialData, serialLength, pluginProfiler);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
catch (std::exception const& e)
{
caughtError(e);
}
return nullptr;
}