TensorRT-LLMs/cpp/tensorrt_llm/kernels/communicationKernels/mnnvlTwoShotAllreduceKernels.cu
hlu1 8207d5fd39
[None] [feat] Add model gpt-oss (#6645)
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com>
2025-08-07 03:04:18 -04:00

707 lines
24 KiB
Plaintext

/*
* Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mnnvlTwoShotAllreduceKernels.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/envUtils.h"
#include "tensorrt_llm/common/logger.h"
#include <cstddef>
#include <cstdint>
#include <cuda/atomic>
#include <cuda_bf16.h>
#include <cuda_pipeline.h>
#include <nvml.h>
namespace tensorrt_llm::kernels::mnnvl
{
// Guard for internal helper functions
namespace
{
__device__ bool isNegZero(float v)
{
return v == 0.f && signbit(v);
}
__device__ bool isNegZero(__nv_bfloat16 val)
{
return isNegZero(__bfloat162float(val));
}
template <typename T>
inline __device__ float toFloat(T val)
{
return val;
}
template <>
inline __device__ float toFloat<__nv_bfloat16>(__nv_bfloat16 val)
{
return __bfloat162float(val);
}
template <>
inline __device__ float toFloat<__nv_half>(__nv_half val)
{
return __half2float(val);
}
template <typename T>
inline __device__ T fromFloat(float val)
{
return val;
}
template <>
inline __device__ __nv_bfloat16 fromFloat<__nv_bfloat16>(float val)
{
return __float2bfloat16(val);
}
template <>
inline __device__ __nv_half fromFloat<__nv_half>(float val)
{
return __float2half(val);
}
inline __device__ float2 loadfloat2(void const* ptr)
{
float2 return_value;
asm volatile("ld.volatile.global.v2.f32 {%0, %1}, [%2];\n" : "=f"(return_value.x), "=f"(return_value.y) : "l"(ptr));
return return_value;
}
template <typename T>
inline __device__ T divUp(T val, T divisor)
{
return (val + divisor - 1) / divisor;
}
__device__ struct __attribute__((aligned(32))) LamportFlags
{
uint32_t buffer_size;
uint32_t input_offset;
uint32_t clear_offset;
uint32_t num_tokens_prev;
uint32_t* offset_access_ptr;
uint32_t* buffer_flags;
__device__ explicit LamportFlags(uint32_t* buffer_flags, uint32_t buffer_size)
: offset_access_ptr(&buffer_flags[4])
, buffer_flags(buffer_flags)
, buffer_size(buffer_size)
{
uint4 flag = reinterpret_cast<uint4*>(buffer_flags)[0];
input_offset = flag.x * (buffer_size << 1U);
clear_offset = flag.y * (buffer_size << 1U);
num_tokens_prev = flag.z;
}
__device__ void cta_arrive()
{
__syncthreads();
if (threadIdx.x == 0)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000))
asm volatile("red.async.release.global.gpu.add.u32 [%0], %1;" ::"l"(offset_access_ptr), "r"(1) : "memory");
#elif (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
asm volatile("red.global.gpu.add.u32 [%0], %1;" ::"l"(offset_access_ptr), "r"(1) : "memory");
#else
atomicAdd(offset_access_ptr, 1);
#endif
}
}
__device__ void wait_and_update(uint32_t num_tokens)
{
if (threadIdx.x == 0 && blockIdx.x == gridDim.x - 1 && blockIdx.y == 0)
{
while (*reinterpret_cast<uint32_t volatile*>(offset_access_ptr) < gridDim.x * gridDim.y)
{
}
uint4 flag = reinterpret_cast<uint4*>(buffer_flags)[0];
buffer_flags[0] = (flag.x + 1) % 3;
buffer_flags[1] = (flag.y + 1) % 3;
buffer_flags[2] = num_tokens;
*(offset_access_ptr) = 0;
}
}
};
} // namespace
template <int WORLD_SIZE, typename T>
__global__ void twoshot_allreduce_kernel(T* output_ptr, T* shard_ptr, T** input_ptrs, T* mcast_ptr, int num_tokens,
int buffer_M, int token_dim, int rank, uint32_t buffer_size, uint32_t* buffer_flags, bool wait_for_results)
{
int elt = blockIdx.y * blockDim.x + threadIdx.x;
if (elt >= token_dim)
return;
int token = blockIdx.x;
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
cudaGridDependencySynchronize();
#endif
LamportFlags flags(buffer_flags, buffer_size);
// Capture the number of tokens in previous iteration so that we can properly clear the buffer
// The scatter stage will use the buffer in WORLD_SIZE granularity, thus we need to round up
uint32_t clr_toks_cta
= divUp<uint32_t>(flags.num_tokens_prev > num_tokens ? flags.num_tokens_prev : num_tokens, WORLD_SIZE)
* WORLD_SIZE;
clr_toks_cta = divUp<uint32_t>(clr_toks_cta, gridDim.x);
if (elt < token_dim)
{
// Scatter token
int dest_rank = token % WORLD_SIZE;
int dest_token_offset = token / WORLD_SIZE;
T val = shard_ptr[token * token_dim + elt];
if (isNegZero(val))
val = fromFloat<T>(0.f);
input_ptrs[dest_rank][flags.input_offset + dest_token_offset * token_dim * WORLD_SIZE + rank * token_dim + elt]
= val;
// Clear the buffer used by the previous call. Note the number of tokens to clear could be larger than the
// number of tokens in the current call.
for (int clr_tok = 0; clr_tok < clr_toks_cta; clr_tok++)
{
uint32_t clr_token_idx = token + clr_tok * gridDim.x;
if (clr_token_idx < buffer_M)
{
input_ptrs[rank][flags.clear_offset + clr_token_idx * token_dim + elt] = fromFloat<T>(-0.f);
}
}
// Reduce and broadcast
if ((token % WORLD_SIZE) == rank)
{
int local_token = token / WORLD_SIZE;
float accum = 0.f;
T values[WORLD_SIZE];
while (1)
{
bool valid = true;
for (int r = 0; r < WORLD_SIZE; r++)
{
T volatile* lamport_ptr = (T volatile*) &input_ptrs[rank][flags.input_offset
+ local_token * token_dim * WORLD_SIZE + r * token_dim + elt];
values[r] = *lamport_ptr;
valid &= !isNegZero(values[r]);
}
if (valid)
break;
}
for (int r = 0; r < WORLD_SIZE; r++)
{
accum += toFloat<T>(values[r]);
}
mcast_ptr[flags.input_offset + buffer_M * token_dim + token * token_dim + elt] = fromFloat<T>(accum);
}
}
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
cudaTriggerProgrammaticLaunchCompletion();
#endif
if (elt < token_dim)
{
// Similarly clear broadcast buffer here
for (int clr_tok = 0; clr_tok < clr_toks_cta; clr_tok++)
{
uint32_t clr_token_idx = token + clr_tok * gridDim.x;
if (clr_token_idx < buffer_M)
{
input_ptrs[rank][flags.clear_offset + buffer_M * token_dim + clr_token_idx * token_dim + elt]
= fromFloat<T>(-0.f);
}
}
}
// Optionally wait for results if the next layer isn't doing the Lamport check
if (wait_for_results)
{
// Update the atomic counter to indicate the block has read the offsets
flags.cta_arrive();
// Only use a set of CTAs for lamport sync, reargange the grid
constexpr int ELTS_PER_LOAD = sizeof(float2) / sizeof(T);
// blockDim.x / ELTS_PER_LOAD should be at least the size of a warp (32)
if (threadIdx.x < (blockDim.x / ELTS_PER_LOAD))
{
uint64_t elt_load_offset = blockIdx.y * blockDim.x + threadIdx.x * ELTS_PER_LOAD;
if (elt_load_offset < token_dim)
{
uint64_t current_pos = blockIdx.x * token_dim + elt_load_offset;
void* lamport_ptr = (void*) &input_ptrs[rank][flags.input_offset + buffer_M * token_dim + current_pos];
// We have 2 assumptions here:
// 1. The write is atomic in 8B granularity -> Each buffer in the buffer group should be aligned to 8B
// 2. The num_token * token_dim is divisible by ELTS_PER_LOAD (4 for BF16 and 2 for FP32)
float2 val = loadfloat2(lamport_ptr);
while (isNegZero(*(T*) &val))
{
val = loadfloat2(lamport_ptr);
}
if (output_ptr)
{
*((float2*) &output_ptr[current_pos]) = val;
}
}
}
// Update the buffer flags
flags.wait_and_update(num_tokens);
}
}
#define LAUNCH_ALL_REDUCE_KERNEL(WORLD_SIZE, T) \
TLLM_CUDA_CHECK( \
cudaLaunchKernelEx(&config, &twoshot_allreduce_kernel<WORLD_SIZE, T>, reinterpret_cast<T*>(params.output), \
reinterpret_cast<T*>(params.input), reinterpret_cast<T**>(params.buffer_ptrs_dev), \
(T*) params.multicast_ptr, params.num_tokens, params.buffer_M, params.token_dim, params.rank, \
params.buffer_size, reinterpret_cast<uint32_t*>(params.buffer_flags), params.wait_for_results));
void twoshot_allreduce_op(AllReduceParams const& params)
{
int const world_size = params.nranks;
int const rank = params.rank;
auto const dtype = params.dtype;
int const buffer_M = params.buffer_M;
int const num_tokens = params.num_tokens;
int const token_dim = params.token_dim;
bool const wait_for_results = params.wait_for_results;
int const num_threads = 128;
int const num_blocks = (token_dim + num_threads - 1) / num_threads;
dim3 grid(num_tokens, num_blocks);
TLLM_LOG_DEBUG(
"[TwoShot AllReduce] twoshot allreduce on rank %d, world_size: %d, buffer_M: %d, num_tokens: %d, token_dim: "
"%d, wait_for_results: %d",
rank, world_size, buffer_M, num_tokens, token_dim, wait_for_results);
cudaLaunchConfig_t config;
cudaLaunchAttribute attrs[1];
config.dynamicSmemBytes = 0;
config.stream = params.stream;
config.gridDim = grid;
config.blockDim = num_threads;
config.attrs = attrs;
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL() ? 1 : 0;
config.numAttrs = 1;
if (dtype == nvinfer1::DataType::kFLOAT)
{
switch (world_size)
{
case 2: LAUNCH_ALL_REDUCE_KERNEL(2, float); break;
case 4: LAUNCH_ALL_REDUCE_KERNEL(4, float); break;
case 8: LAUNCH_ALL_REDUCE_KERNEL(8, float); break;
case 16: LAUNCH_ALL_REDUCE_KERNEL(16, float); break;
case 32: LAUNCH_ALL_REDUCE_KERNEL(32, float); break;
case 64: LAUNCH_ALL_REDUCE_KERNEL(64, float); break;
default: TLLM_CHECK_WITH_INFO(false, "TwoShot AllReduce]: unsupported world_size.");
}
}
else if (dtype == nvinfer1::DataType::kBF16)
{
switch (world_size)
{
case 2: LAUNCH_ALL_REDUCE_KERNEL(2, __nv_bfloat16); break;
case 4: LAUNCH_ALL_REDUCE_KERNEL(4, __nv_bfloat16); break;
case 8: LAUNCH_ALL_REDUCE_KERNEL(8, __nv_bfloat16); break;
case 16: LAUNCH_ALL_REDUCE_KERNEL(16, __nv_bfloat16); break;
case 32: LAUNCH_ALL_REDUCE_KERNEL(32, __nv_bfloat16); break;
case 64: LAUNCH_ALL_REDUCE_KERNEL(64, __nv_bfloat16); break;
default: TLLM_CHECK_WITH_INFO(false, "TwoShot AllReduce]: unsupported world_size.");
}
}
else if (dtype == nvinfer1::DataType::kHALF)
{
switch (world_size)
{
case 2: LAUNCH_ALL_REDUCE_KERNEL(2, __nv_half); break;
case 4: LAUNCH_ALL_REDUCE_KERNEL(4, __nv_half); break;
case 8: LAUNCH_ALL_REDUCE_KERNEL(8, __nv_half); break;
case 16: LAUNCH_ALL_REDUCE_KERNEL(16, __nv_half); break;
case 32: LAUNCH_ALL_REDUCE_KERNEL(32, __nv_half); break;
case 64: LAUNCH_ALL_REDUCE_KERNEL(64, __nv_half); break;
default: TLLM_CHECK_WITH_INFO(false, "TwoShot AllReduce]: unsupported world_size.");
}
}
else
{
TLLM_CHECK_WITH_INFO(false, "TwoShot AllReduce]: unsupported dtype.");
}
}
// Guard for internal helper functions
namespace
{
template <typename T_IN>
__device__ void copy_f4(T_IN* dst, T_IN const* src)
{
float4* dst4 = (float4*) dst;
float4 const* src4 = (float4 const*) src;
__pipeline_memcpy_async(dst4, src4, sizeof(float4));
}
template <typename T_IN>
__device__ void copy_f4_ldg(T_IN* dst, T_IN const* src)
{
float4* dst4 = (float4*) dst;
float4 const* src4 = (float4*) src;
*dst4 = *src4;
}
template <typename T>
inline __device__ T add(T a, T b)
{
return a + b;
}
#define FINAL_MASK 0xffffffff
#define WARP_SIZE 32
template <typename T>
__inline__ __device__ T warpReduceSum(T val)
{
// Get the actual number of active threads in this warp
int active_warp_size = min(WARP_SIZE, blockDim.x - (threadIdx.x & ~(WARP_SIZE - 1)));
unsigned int mask = (1U << active_warp_size) - 1;
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1)
{
if (offset < active_warp_size)
{
val = add<T>(val, __shfl_xor_sync(mask, val, offset, WARP_SIZE));
}
}
return val;
}
inline __device__ float block_reduce_sum(float val)
{
__shared__ float smem[WARP_SIZE];
int lane_id = threadIdx.x % WARP_SIZE;
int warp_id = threadIdx.x / WARP_SIZE;
int warp_num = (blockDim.x + WARP_SIZE - 1) / WARP_SIZE; // Ceiling division to include partial warps
val = warpReduceSum(val);
if (lane_id == 0)
{
smem[warp_id] = val;
}
__syncthreads();
val = lane_id < warp_num ? smem[lane_id] : 0.f;
val = warpReduceSum(val);
return val;
}
__device__ float4 loadfloat4(void const* ptr)
{
float4 return_value;
asm volatile("ld.volatile.global.v4.f32 {%0, %1, %2, %3}, [%4];\n"
: "=f"(return_value.x), "=f"(return_value.y), "=f"(return_value.z), "=f"(return_value.w)
: "l"(ptr));
return return_value;
}
} // namespace
template <int DIM, int NUM_THREADS, int NUM_INPUTS, typename T_OUT, typename T_IN>
__global__ void __launch_bounds__(128, 1)
RMSNorm(T_IN* input_plus_residual, T_OUT* output_norm, T_IN const* buffer_input, T_IN const* gamma, float epsilon,
T_IN const* residual, int batch_size, uint32_t buffer_size, uint32_t* buffer_flags)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
static bool const LAMPORT = true;
extern __shared__ uint8_t smem[];
int sample = blockIdx.y;
static int const CGA_THREADS = NUM_THREADS * 1;
static int const ITERS = DIM / CGA_THREADS;
float r_input[ITERS];
float r_gamma[ITERS];
T_IN* sh_input = (T_IN*) &smem[0];
T_IN* sh_residual = (T_IN*) &smem[NUM_INPUTS * NUM_THREADS * ITERS * sizeof(T_IN)];
T_IN* sh_gamma = (T_IN*) &smem[(NUM_INPUTS + 1) * NUM_THREADS * ITERS * sizeof(T_IN)];
static int const ELTS_PER_THREAD = sizeof(float4) / sizeof(T_IN);
int offsets[NUM_INPUTS][DIM / (1 * ELTS_PER_THREAD * NUM_THREADS)];
LamportFlags flags(buffer_flags, buffer_size);
T_IN const* input = &buffer_input[flags.input_offset + flags.buffer_size];
cudaTriggerProgrammaticLaunchCompletion();
for (int i = 0; i < NUM_INPUTS; i++)
{
for (int j = 0; j < DIM / (1 * ELTS_PER_THREAD * NUM_THREADS); j++)
{
int k = j * NUM_THREADS + threadIdx.x;
offsets[i][j] = i * batch_size * DIM + sample * DIM + blockIdx.x * DIM / 1 + k * ELTS_PER_THREAD;
}
}
#pragma unroll
for (int j = 0; j < DIM / (1 * ELTS_PER_THREAD * NUM_THREADS); j++)
{
int i = j * NUM_THREADS + threadIdx.x;
copy_f4(&sh_residual[i * ELTS_PER_THREAD], &residual[sample * DIM + blockIdx.x * DIM + i * ELTS_PER_THREAD]);
}
__pipeline_commit();
#pragma unroll
for (int j = 0; j < DIM / (ELTS_PER_THREAD * NUM_THREADS); j++)
{
int i = j * NUM_THREADS + threadIdx.x;
copy_f4(&sh_gamma[i * ELTS_PER_THREAD], &gamma[blockIdx.x * DIM + i * ELTS_PER_THREAD]);
}
__pipeline_commit();
flags.cta_arrive();
// Load all inputs
bool valid = false;
if (!LAMPORT)
cudaGridDependencySynchronize();
while (!valid)
{
valid = true;
#pragma unroll
for (int i = 0; i < NUM_INPUTS; i++)
{
for (int j = 0; j < DIM / (ELTS_PER_THREAD * NUM_THREADS); j++)
{
int k = j * NUM_THREADS + threadIdx.x;
float4* dst4 = (float4*) &sh_input[i * NUM_THREADS * ITERS + k * ELTS_PER_THREAD];
float4* src4 = (float4*) &input[offsets[i][j]];
float4 value = loadfloat4(src4);
if (LAMPORT)
{
// Assume that the 16B were written atomically, so we only need to check one value
T_IN lowest_val = *(T_IN*) &value;
valid &= !isNegZero(lowest_val);
}
*dst4 = value;
}
}
}
__syncthreads();
// Perform the initial input reduction
if (NUM_INPUTS > 0)
{
T_IN accum[ELTS_PER_THREAD];
float4* accum4 = (float4*) &accum;
for (int j = 0; j < DIM / (ELTS_PER_THREAD * NUM_THREADS); j++)
{
int k = j * NUM_THREADS + threadIdx.x;
*accum4 = *(float4*) &sh_input[k * ELTS_PER_THREAD];
for (int i = 1; i < NUM_INPUTS; i++)
{
float4 data = *(float4*) &sh_input[i * NUM_THREADS * ITERS + k * ELTS_PER_THREAD];
T_IN* p_d = (T_IN*) &data;
for (int x = 0; x < ELTS_PER_THREAD; x++)
{
accum[x] += p_d[x];
}
}
// Write back to input 0's staging location. No sync needed since all data localized to thread.
*(float4*) &sh_input[k * ELTS_PER_THREAD] = *accum4;
}
}
// Wait for residual
__pipeline_wait_prior(1);
__syncthreads();
float thread_sum = 0.f;
#pragma unroll
for (int io = 0; io < ITERS / ELTS_PER_THREAD; io++)
{
float4 inp4 = *(float4*) &sh_input[io * NUM_THREADS * ELTS_PER_THREAD + threadIdx.x * ELTS_PER_THREAD];
float4 res4 = *(float4*) &sh_residual[io * NUM_THREADS * ELTS_PER_THREAD + threadIdx.x * ELTS_PER_THREAD];
T_IN* r_inp = (T_IN*) &inp4;
T_IN* r_res = (T_IN*) &res4;
float4 out4;
T_IN* r_out = (T_IN*) &out4;
for (int ii = 0; ii < ELTS_PER_THREAD; ii++)
{
int i = io * ELTS_PER_THREAD + ii;
T_IN inp_plus_resid = r_inp[ii] + r_res[ii];
r_out[ii] = inp_plus_resid;
r_input[i] = toFloat(inp_plus_resid);
// Accumulate the squares for RMSNorm
thread_sum += toFloat(inp_plus_resid * inp_plus_resid);
}
*(float4*) &input_plus_residual[sample * DIM + blockIdx.x * DIM + io * NUM_THREADS * ELTS_PER_THREAD
+ threadIdx.x * ELTS_PER_THREAD]
= out4;
}
// Wait for Gamma. There will be a global synchronization as part of the reduction
__pipeline_wait_prior(0);
float cluster_sum = block_reduce_sum(thread_sum);
float rcp_rms = rsqrtf(cluster_sum / DIM + epsilon);
#pragma unroll
for (int io = 0; io < ITERS / ELTS_PER_THREAD; io++)
{
float4 gamma4 = *(float4*) &sh_gamma[io * NUM_THREADS * ELTS_PER_THREAD + threadIdx.x * ELTS_PER_THREAD];
T_IN* r_g4 = (T_IN*) &gamma4;
float4 out4;
// FIXME: this only works if T_OUT == T_IN
T_OUT* r_out = (T_OUT*) &out4;
for (int ii = 0; ii < ELTS_PER_THREAD; ii++)
{
int i = io * ELTS_PER_THREAD + ii;
r_gamma[i] = toFloat(r_g4[ii]);
r_out[ii] = fromFloat<T_OUT>(r_gamma[i] * r_input[i] * rcp_rms);
}
*(float4*) &output_norm[sample * DIM + blockIdx.x * DIM + io * NUM_THREADS * ELTS_PER_THREAD
+ threadIdx.x * ELTS_PER_THREAD]
= out4;
}
// Update the buffer pointers
flags.wait_and_update(batch_size);
#endif
}
template <typename T, int H_DIM, int NUM_THREADS>
void twoshot_rmsnorm(T* prenorm_output, T* normed_output, T const* input, T const* gamma, double epsilon,
T const* residual, uint32_t buffer_size, uint32_t* buffer_flags, int batch, cudaStream_t stream)
{
// input to rmsnorm is the buffer in the twoshot ar
// We should use prenorm output to determine the actual used size
float _epsilon{static_cast<float>(epsilon)};
static constexpr int CGA_THREADS = NUM_THREADS;
constexpr int iters = H_DIM / CGA_THREADS;
dim3 grid(1, batch, 1);
cudaLaunchConfig_t config;
cudaLaunchAttribute attrs[1];
config.stream = stream;
config.gridDim = grid;
config.blockDim = NUM_THREADS;
config.attrs = attrs;
attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL() ? 1 : 0;
config.numAttrs = 1;
size_t shmem_size = 3 * NUM_THREADS * iters * sizeof(T);
cudaFuncSetAttribute(
&RMSNorm<H_DIM, NUM_THREADS, 1, T, T>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem_size);
config.dynamicSmemBytes = shmem_size;
TLLM_CUDA_CHECK(cudaLaunchKernelEx(&config, &RMSNorm<H_DIM, NUM_THREADS, 1, T, T>, prenorm_output, normed_output,
input, gamma, _epsilon, residual, batch, buffer_size, buffer_flags));
}
#define LAUNCH_RMSNORM_KERNEL(T, H_DIM, NUM_THREADS) \
twoshot_rmsnorm<T, H_DIM, NUM_THREADS>(static_cast<T*>(params.residual_output), static_cast<T*>(params.output), \
static_cast<T const*>(params.input), static_cast<T const*>(params.gamma), params.epsilon, \
static_cast<T const*>(params.residual), params.buffer_size, params.buffer_flags, params.batch, params.stream)
void twoshot_rmsnorm_op(RMSNormParams const& params)
{
auto dtype = params.dtype;
#define CASE_DISPATCH_RMSNORM(T, H_DIM, NUM_THREADS) \
case H_DIM: LAUNCH_RMSNORM_KERNEL(T, H_DIM, NUM_THREADS); break;
#define TYPE_DISPATCH_RMSNORM(T) \
CASE_DISPATCH_RMSNORM(T, 2048, 128) \
CASE_DISPATCH_RMSNORM(T, 2880, 120) \
CASE_DISPATCH_RMSNORM(T, 4096, 128) \
CASE_DISPATCH_RMSNORM(T, 5120, 128) \
CASE_DISPATCH_RMSNORM(T, 7168, 128) \
CASE_DISPATCH_RMSNORM(T, 8192, 128)
if (dtype == nvinfer1::DataType::kFLOAT)
{
switch (params.hidden_dim)
{
TYPE_DISPATCH_RMSNORM(float);
default: TLLM_CHECK_WITH_INFO(false, "[MNNVL TwoShot RMSNorm]: unsupported hidden_dim.");
}
}
else if (dtype == nvinfer1::DataType::kBF16)
{
switch (params.hidden_dim)
{
TYPE_DISPATCH_RMSNORM(__nv_bfloat16);
default: TLLM_CHECK_WITH_INFO(false, "[MNNVL TwoShot RMSNorm]: unsupported hidden_dim.");
}
}
else if (dtype == nvinfer1::DataType::kHALF)
{
switch (params.hidden_dim)
{
TYPE_DISPATCH_RMSNORM(__nv_half);
default: TLLM_CHECK_WITH_INFO(false, "[MNNVL TwoShot RMSNorm]: unsupported hidden_dim.");
}
}
else
{
TLLM_CHECK_WITH_INFO(false, "[MNNVL TwoShot RMSNorm]: unsupported dtype.");
}
#undef TYPE_DISPATCH_RMSNORM
#undef CASE_DISPATCH_RMSNORM
}
} // namespace tensorrt_llm::kernels::mnnvl