TensorRT-LLMs/cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.h
2025-03-11 21:13:42 +08:00

627 lines
19 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION &
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TRT_MIXTURE_OF_EXPERTS_PLUGIN_H
#define TRT_MIXTURE_OF_EXPERTS_PLUGIN_H
#include "NvInferPlugin.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_kernels.h"
#include "tensorrt_llm/kernels/lora/lora.h"
#include "tensorrt_llm/plugins/common/gemmPluginProfiler.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include "tensorrt_llm/plugins/cudaStreamPlugin/cudaStreamPlugin.h"
#include "tensorrt_llm/plugins/gemmPlugin/gemmPlugin.h"
#include "tensorrt_llm/plugins/weightOnlyGroupwiseQuantMatmulPlugin/weightOnlyGroupwiseQuantMatmulPlugin.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include <cassert>
#include <set>
#include <string>
#include <vector>
namespace tensorrt_llm::plugins
{
class MixtureOfExpertsGemmProfiler;
using MOEParallelismConfig = tensorrt_llm::kernels::MOEParallelismConfig;
using MixtureOfExpertsPluginProfilerPtr = std::shared_ptr<MixtureOfExpertsGemmProfiler>;
using GroupwiseQuantAlgo = tensorrt_llm::common::GroupwiseQuantAlgo;
struct GemmIDMoe
{
int gemm_idx;
int num_experts{};
int experts_per_token{};
MOEParallelismConfig parallelism_config{};
int64_t hidden{};
int64_t inter{};
int64_t group_size{};
tensorrt_llm::ActivationType actfn{};
nvinfer1::DataType dtype{};
nvinfer1::DataType wdtype{};
tensorrt_llm::common::QuantMode quant_mode;
bool determinism_mode = false;
bool operator==(GemmIDMoe const& id) const
{
return id.gemm_idx == gemm_idx && id.num_experts == num_experts && id.experts_per_token == experts_per_token
&& id.parallelism_config == parallelism_config && id.hidden == hidden && id.inter == inter
&& id.group_size == group_size && id.actfn == actfn && id.dtype == dtype && id.wdtype == wdtype
&& id.quant_mode == quant_mode && id.determinism_mode == determinism_mode;
}
friend std::ostream& operator<<(std::ostream& out, GemmIDMoe const& id)
{
out << "gemm idx, experts, experts_per_token, parallelism_config, hidden, inter, group_size, actfn, dtype, "
"weight "
"type, parallelism mode, determinism mode="
<< id.gemm_idx << "," << id.num_experts << "," << id.experts_per_token << "," << id.parallelism_config
<< "," << id.hidden << "," << id.inter << "," << id.group_size << "," << static_cast<int>(id.actfn) << ","
<< static_cast<int>(id.dtype) << "," << static_cast<int>(id.wdtype) << "," << id.quant_mode.value() << ","
<< id.determinism_mode;
return out;
}
};
// Hash of GemmIDMoe
struct GemmIDMoeHash
{
std::size_t operator()(GemmIDMoe const& id) const
{
size_t hash = std::hash<int>{}(id.gemm_idx);
hash ^= std::hash<int>{}(id.num_experts);
hash ^= std::hash<int>{}(id.experts_per_token);
hash ^= std::hash<int>{}(id.parallelism_config.tp_size);
hash ^= std::hash<int>{}(id.parallelism_config.ep_size);
hash ^= std::hash<int>{}(id.parallelism_config.tp_rank);
hash ^= std::hash<int>{}(id.parallelism_config.ep_rank);
hash ^= std::hash<int>{}(id.hidden);
hash ^= std::hash<int>{}(id.inter);
hash ^= std::hash<int>{}(id.group_size);
hash ^= std::hash<int>{}(static_cast<int>(id.actfn));
hash ^= std::hash<int>{}(static_cast<int>(id.dtype));
hash ^= std::hash<int>{}(static_cast<int>(id.wdtype));
hash ^= std::hash<int>{}(static_cast<int>(id.quant_mode.value()));
return hash;
}
};
class MixtureOfExpertsPlugin : public nvinfer1::IPluginV2DynamicExt
{
public:
using MOEParallelismConfig = tensorrt_llm::kernels::MOEParallelismConfig;
using LoraPluginProfilerPtr = std::shared_ptr<CublasLtGemmPluginProfiler>;
using LoraImplPtr = std::shared_ptr<kernels::LoraImpl>;
MixtureOfExpertsPlugin() = delete;
MixtureOfExpertsPlugin(bool remove_input_padding, int number_of_experts, int experts_per_token,
int expert_hidden_size, int expert_inter_size, int groupwise_quant_algo, int group_size,
tensorrt_llm::ActivationType activation_type, nvinfer1::DataType type, nvinfer1::DataType weight_type,
nvinfer1::DataType output_type, tensorrt_llm::common::QuantMode quant_mode, bool use_final_scales,
bool use_bias, int tp_size, int tp_rank, int ep_size, int ep_rank, bool force_determinism, int side_stream_id,
MixtureOfExpertsPluginProfilerPtr gemm_profiler_ptr, bool use_lora, nvinfer1::DataType lora_type,
LoraPluginProfilerPtr lora_profiler, int max_low_rank);
MixtureOfExpertsPlugin(void const* data, size_t length, MixtureOfExpertsPluginProfilerPtr gemm_profiler_ptr,
LoraPluginProfilerPtr lora_profiler);
MixtureOfExpertsPlugin(MixtureOfExpertsPlugin const&);
void init();
~MixtureOfExpertsPlugin() override = default;
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* clone() const noexcept override;
nvinfer1::DimsExprs getOutputDimensions(int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) noexcept override;
bool supportsFormatCombination(
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept override;
void configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept override;
size_t getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept override;
int enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept override;
// IPluginV2 Methods
char const* getPluginType() const noexcept override;
char const* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override
{
return 1 + useSideStream();
}
int initialize() noexcept override;
void terminate() noexcept override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void destroy() noexcept override;
void setPluginNamespace(char const* pluginNamespace) noexcept override;
char const* getPluginNamespace() const noexcept override;
private:
friend class MixtureOfExpertsGemmProfiler;
std::unique_ptr<kernels::CutlassMoeFCRunnerInterface> mMOERunner{};
int mNumExperts{};
int mExpertsPerToken{};
int64_t mExpertHiddenSize{};
int64_t mExpertInterSize{};
int64_t mGroupwiseQuantAlgo{};
int64_t mGroupSize{};
tensorrt_llm::ActivationType mActivationType;
nvinfer1::DataType mType{};
nvinfer1::DataType mWeightType{};
nvinfer1::DataType mOutputType{};
tensorrt_llm::common::QuantMode mQuantMode;
bool mUseFinalScales{};
bool mUseBias{};
MOEParallelismConfig mParallelismConfig{};
GemmDims mDims{};
bool mUseDeterministicKernels = false;
int mSideStreamId = 0;
int mDebugStallMain = 0;
int mDebugStallSide = 0;
GemmIDMoe mGemmId1{};
GemmIDMoe mGemmId2{};
MixtureOfExpertsPluginProfilerPtr mGemmProfiler;
// lora related
bool mUseLora{};
nvinfer1::DataType mLoraType{};
int mMaxLowRank{};
bool mRemoveInputPadding{};
LoraImplPtr mLoraImpl1;
LoraImplPtr mLoraImpl2;
GemmIdCublas mLoraGemmId1{};
GemmIdCublas mLoraGemmId2{};
LoraPluginProfilerPtr mLoraProfiler;
std::vector<void const*> mLoraExpandFC1WeightPtrs{};
std::vector<void const*> mLoraExpandFC2WeightPtrs{};
std::vector<void const*> mLoraExpandGatedWeightPtrs{};
std::vector<int32_t> mLoraExpandFC1Ranks{};
std::vector<int32_t> mLoraExpandFC2Ranks{};
std::vector<int32_t> mLoraExpandGatedRanks{};
cudaEvent_t mMemcpyEvent;
nvinfer1::pluginInternal::SideStream* mSideStreamPtr;
// The below are not serialised
std::string const mLayerName{};
std::string mNamespace{};
struct WorkspaceInfo
{
void* workspace{};
void* src_to_dest_map{};
void* lora_workspace{};
size_t size{};
};
int64_t getNumTokens(nvinfer1::PluginTensorDesc const* input_tensor) const;
WorkspaceInfo setupWorkspace(void* base_ptr, int64_t num_tokens, int num_reqs = 0) const;
kernels::MOEParallelismConfig getParallelismConfig() const;
kernels::QuantParams getQuantParams(nvinfer1::PluginTensorDesc const* inputDesc, void const* const* inputs,
int scale_1_idx = -1, int scale_2_idx = -1, int scale_3_idx = -1, int scale_4_idx = -1, int scale_5_idx = -1,
int scale_6_idx = -1, int scale_7_idx = -1, int scale_8_idx = -1) const;
int getNumLoraRequests(nvinfer1::PluginTensorDesc const* input_tensor) const;
kernels::LoraParams getLoraParams(
nvinfer1::PluginTensorDesc const* inputDesc, void const* const* inputs, void* workspace);
enum class RequestType : int32_t
{
kCONTEXT = 0,
kGENERATION = 1
};
using IndexType = std::int32_t;
// Inputs
constexpr static IndexType getInputTensorIndex()
{
return 0;
}
constexpr static IndexType getExpertWeights1Index()
{
return getInputTensorIndex() + 1;
}
constexpr static IndexType getExpertWeights2Index()
{
return getExpertWeights1Index() + 1;
}
constexpr static IndexType getTokenSelectedExpertsIndex()
{
return getExpertWeights2Index() + 1;
}
// Conditional inputs, we only allocate a new index if actually used
bool hasBias() const
{
return mUseBias;
}
bool hasFinalScales() const
{
return mUseFinalScales;
}
bool hasExpertIntQuantScales() const
{
return mQuantMode.hasInt4Weights() || mQuantMode.hasInt8Weights();
}
bool hasExpertFp8QuantScales() const
{
return mQuantMode.hasFp8Qdq();
}
bool hasExpertFp8FinalQuantScales() const
{
return hasExpertFp8QuantScales() && mOutputType == nvinfer1::DataType::kFP8;
}
bool hasFP4QuantScales() const
{
return mQuantMode.hasNvfp4();
}
bool hasGroupwiseIntQuantScales() const
{
return mGroupwiseQuantAlgo > 0;
}
bool hasExpertWeightQuantZeros() const
{
return mGroupwiseQuantAlgo & GroupwiseQuantAlgo::ZERO;
}
bool hasExpertPrequantScales() const
{
return mGroupwiseQuantAlgo & GroupwiseQuantAlgo::PRE_QUANT_SCALE;
}
bool hasGroupwiseFp8Alpha() const
{
return mGroupwiseQuantAlgo & GroupwiseQuantAlgo::FP8_ALPHA;
}
bool useSideStream() const
{
return mSideStreamId > 0;
}
bool hasLora() const
{
return mUseLora;
}
bool hasGatedLoraWeightsAndRanks() const
{
return mUseLora && isGatedActivation(mActivationType);
}
IndexType getTokenFinalScalesIndex() const
{
return getTokenSelectedExpertsIndex() + hasFinalScales();
}
IndexType getExpertBias1Index() const
{
return getTokenFinalScalesIndex() + hasBias();
}
IndexType getExpertBias2Index() const
{
return getExpertBias1Index() + hasBias();
}
/*
* Weight-Only int quant scales
*/
IndexType getExpertIntQuantScale1Index() const
{
return getExpertBias2Index() + hasExpertIntQuantScales();
}
IndexType getExpertIntQuantScale2Index() const
{
return getExpertIntQuantScale1Index() + hasExpertIntQuantScales();
}
/*
* FP8 Quant Scales
*/
IndexType getExpertFP8Dequant1Index() const
{
return getExpertIntQuantScale2Index() + hasExpertFp8QuantScales();
}
IndexType getExpertFP8Quant2Index() const
{
return getExpertFP8Dequant1Index() + hasExpertFp8QuantScales();
}
IndexType getExpertFP8Dequant2Index() const
{
return getExpertFP8Quant2Index() + hasExpertFp8QuantScales();
}
IndexType getExpertFP8QuantFinalIndex() const
{
return getExpertFP8Dequant2Index() + hasExpertFp8FinalQuantScales();
}
IndexType getInputFP8DequantIndex() const
{
return getExpertFP8QuantFinalIndex() + (hasExpertFp8QuantScales() && hasLora());
}
/*
* FP4 Quant Scales
*/
IndexType getFP4GlobalActSF1Index() const
{
return getInputFP8DequantIndex() + hasFP4QuantScales();
}
IndexType getFP4WeightSF1Index() const
{
return getFP4GlobalActSF1Index() + hasFP4QuantScales();
}
IndexType getFP4GlobalSF1Index() const
{
return getFP4WeightSF1Index() + hasFP4QuantScales();
}
IndexType getFP4GlobalActSF2Index() const
{
return getFP4GlobalSF1Index() + hasFP4QuantScales();
}
IndexType getFP4WeightSF2Index() const
{
return getFP4GlobalActSF2Index() + hasFP4QuantScales();
}
IndexType getFP4GlobalSF2Index() const
{
return getFP4WeightSF2Index() + hasFP4QuantScales();
}
/*
* Groupwise Params
*/
IndexType getExpertPrequantScales1Index() const
{
return getFP4GlobalSF2Index() + hasExpertPrequantScales();
}
IndexType getExpertPrequantScales2Index() const
{
return getExpertPrequantScales1Index() + hasExpertPrequantScales();
}
IndexType getExpertIntQuantZeros1Index() const
{
return getExpertPrequantScales2Index() + hasExpertWeightQuantZeros();
}
IndexType getExpertIntQuantZeros2Index() const
{
return getExpertIntQuantZeros1Index() + hasExpertWeightQuantZeros();
}
IndexType getExpertFp8Alpha1Index() const
{
return getExpertIntQuantZeros2Index() + hasGroupwiseFp8Alpha();
}
IndexType getExpertFp8Alpha2Index() const
{
return getExpertFp8Alpha1Index() + hasGroupwiseFp8Alpha();
}
/*
* LoRA params
*/
IndexType getLoraFC1WeightPtrsIndex() const
{
return getExpertFp8Alpha2Index() + hasLora();
}
IndexType getLoraFC1RanksIndex() const
{
return getLoraFC1WeightPtrsIndex() + hasLora();
}
IndexType getLoraFC2WeightPtrsIndex() const
{
return getLoraFC1RanksIndex() + hasLora();
}
IndexType getLoraFC2RanksIndex() const
{
return getLoraFC2WeightPtrsIndex() + hasLora();
}
IndexType getLoraGatedWeightPtrsIndex() const
{
return getLoraFC2RanksIndex() + hasGatedLoraWeightsAndRanks();
}
IndexType getLoraGatedRanksIndex() const
{
return getLoraGatedWeightPtrsIndex() + hasGatedLoraWeightsAndRanks();
}
IndexType getHostRequestTypeIndex() const
{
return getLoraGatedRanksIndex() + hasLora();
}
IndexType getHostContextLengthIndex() const
{
return getHostRequestTypeIndex() + (mRemoveInputPadding && hasLora());
}
IndexType getInputDummyTensorIndex() const
{
return getHostContextLengthIndex() + useSideStream();
}
IndexType getNbInputs() const
{
return getInputDummyTensorIndex() + 1;
}
// Outputs
constexpr static IndexType getOutputTensorIndex()
{
return 0;
}
IndexType getOutputDummyTensorIndex() const
{
return getOutputTensorIndex() + useSideStream();
}
/**
* Get the index of the expert shape tuple that represents the inner dimension
*/
int getGemmShapeInnerDimIndex() const
{
// In weight only mode the shape is transposed
return hasExpertIntQuantScales() ? 1 : 2;
}
/**
* Get the index of the expert shape tuple that represents the outer dimension
*/
int getGemmShapeOuterDimIndex() const
{
// In weight only mode the shape is transposed
return hasExpertIntQuantScales() ? 2 : 1;
}
/**
* Get quantization dimension scaling factor
*/
std::pair<int, int> getWeightPackedElements() const
{
if (mGroupwiseQuantAlgo == 0)
{
return {1, mQuantMode.hasInt4Weights() ? 2 : 1};
}
else
{
return {1, 4};
}
}
};
class MixtureOfExpertsGemmProfiler
: public tensorrt_llm::plugins::GemmPluginProfiler<tensorrt_llm::cutlass_extensions::CutlassGemmConfig,
MixtureOfExpertsPlugin*, GemmIDMoe, GemmIDMoeHash>
{
public:
MixtureOfExpertsGemmProfiler()
{
// NOTE: Do not access mPlugin here, since we are called from the constructor before all fields are init
}
void setGemmToProfile(tensorrt_llm::kernels::GemmProfilerBackend::GemmToProfile gemm_to_profile)
{
// Just set the backend directly. This will just be reused in checkInit().
backend.mGemmToProfile = gemm_to_profile;
// We need to set the backend to reinitialise itself with the new GEMM
init_backend = false;
}
void setMaxProfileM(int maxProfileM)
{
mMaxProfileM = maxProfileM;
}
virtual int getMaxProfileM() const override
{
return mMaxProfileM;
}
protected:
using Config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig;
void runTactic(int m, int n, int k, Config const& tactic, char* workspace, cudaStream_t const& stream) override;
void computeTmpSize(size_t maxM, size_t n, size_t k) override;
std::vector<Config> getTactics(int m, int n, int k) const override;
void initTmpData(int maxM, int n, int k, char* workspace, size_t size, cudaStream_t stream) override;
void checkInit();
bool init_backend = false;
tensorrt_llm::kernels::GemmProfilerBackend backend{};
private:
int mMaxProfileM = 0;
};
class MixtureOfExpertsPluginCreator : public nvinfer1::IPluginCreator
{
public:
MixtureOfExpertsPluginCreator();
char const* getPluginName() const noexcept override;
char const* getPluginVersion() const noexcept override;
nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override;
nvinfer1::IPluginV2* createPlugin(char const* name, nvinfer1::PluginFieldCollection const* fc) noexcept override;
nvinfer1::IPluginV2* deserializePlugin(
char const* name, void const* serialData, size_t serialLength) noexcept override;
void setPluginNamespace(char const* pluginNamespace) noexcept override;
char const* getPluginNamespace() const noexcept override;
private:
GemmPluginProfilerManager<MixtureOfExpertsGemmProfiler> moePluginProfiler;
GemmPluginProfilerManager<CublasLtGemmPluginProfiler> loraPluginProfileManager;
static nvinfer1::PluginFieldCollection mFC;
static std::vector<nvinfer1::PluginField> mPluginAttributes;
std::string mNamespace;
};
} // namespace tensorrt_llm::plugins
#endif // TRT_MIXTURE_OF_EXPERTS_PLUGIN_H