TensorRT-LLMs/cpp/tests/resources/scripts/build_mamba_engines.py
石晓伟 548b5b7310
Update TensorRT-LLM (#2532)
* blossom-ci.yml: run vulnerability scan on blossom

* open source efb18c1256f8c9c3d47b7d0c740b83e5d5ebe0ec

---------

Co-authored-by: niukuo <6831097+niukuo@users.noreply.github.com>
Co-authored-by: pei0033 <59505847+pei0033@users.noreply.github.com>
Co-authored-by: Kyungmin Lee <30465912+lkm2835@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 21:16:56 +08:00

156 lines
6.1 KiB
Python

#!/usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse as _arg
import os as _os
import pathlib as _pl
import platform as _pf
import sys as _sys
import typing as _tp
from build_engines_utils import init_model_spec_module, run_command, wincopy
init_model_spec_module()
import model_spec
import tensorrt_llm.bindings as _tb
def build_engine(weight_dir: _pl.Path, ckpt_dir: _pl.Path, engine_dir: _pl.Path,
*args):
convert_args = [_sys.executable, "examples/mamba/convert_checkpoint.py"] + (
['--model_dir', str(weight_dir)] if weight_dir else []) + [
'--output_dir',
str(ckpt_dir),
'--dtype=float16',
]
run_command(convert_args)
build_args = ["trtllm-build"] + ['--checkpoint_dir',
str(ckpt_dir)] + [
'--output_dir',
str(engine_dir),
'--gpt_attention_plugin=disable',
'--paged_kv_cache=disable',
'--gemm_plugin=disable',
'--max_batch_size=8',
'--max_input_len=924',
'--max_seq_len=1024',
'--max_beam_width=1',
] + list(args)
run_command(build_args)
def build_engines(model_cache: _tp.Optional[str] = None):
resources_dir = _pl.Path(__file__).parent.resolve().parent
models_dir = resources_dir / 'models'
model_name = 'mamba-2.8b-hf'
if model_cache:
print("Copy model from model_cache")
model_cache_dir = _pl.Path(model_cache) / 'mamba' / model_name
if _pf.system() == "Windows":
wincopy(source=str(model_cache_dir),
dest=model_name,
isdir=True,
cwd=models_dir)
else:
run_command(["rsync", "-rlptD",
str(model_cache_dir), "."],
cwd=models_dir)
else:
print("Clone model from HF")
hf_dir = _pl.Path(models_dir) / model_name
run_command(
[
"git", "clone",
"https://huggingface.co/state-spaces/mamba-2.8b-hf", model_name
],
cwd=models_dir,
)
hf_dir = models_dir / model_name
assert (hf_dir.is_dir())
# Clone or update the tokenizer directory without lfs
tokenizer_name = 'gpt-neox-20b'
tokenizer_hf_dir = models_dir / tokenizer_name
if tokenizer_hf_dir.exists():
assert tokenizer_hf_dir.is_dir()
run_command(["git", "pull"], cwd=tokenizer_hf_dir)
else:
if _pf.system() == "Windows":
url_prefix = ""
else:
url_prefix = "file://"
tokenizer_url = url_prefix + str(
_pl.Path(model_cache) / tokenizer_name
) if model_cache else "https://huggingface.co/EleutherAI/gpt-neox-20b"
run_command([
"git", "clone", tokenizer_url, "--single-branch", "--no-local",
tokenizer_name
],
cwd=tokenizer_hf_dir.parent,
env={
**_os.environ, "GIT_LFS_SKIP_SMUDGE": "1"
})
tp_size = 1
pp_size = 1
cp_size = 1
tp_pp_cp_dir = f"tp{tp_size}-pp{pp_size}-cp{cp_size}-gpu"
ckpt_dir = models_dir / 'rt_ckpt' / model_name
engine_dir = models_dir / 'rt_engine' / model_name
model_spec_obj = model_spec.ModelSpec('input_tokens.npy', _tb.DataType.HALF)
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.CONTINUOUS)
model_spec_obj.use_tensor_parallelism(tp_size)
model_spec_obj.use_pipeline_parallelism(pp_size)
model_spec_obj.use_context_parallelism(cp_size)
print("\nBuilding fp16 engine")
build_engine(hf_dir,
ckpt_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--remove_input_padding=disable', '--paged_state=disable',
'--mamba_conv1d_plugin=disable')
print("\nBuilding fp16-plugin engine")
model_spec_obj.use_mamba_plugin()
build_engine(hf_dir,
ckpt_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--remove_input_padding=disable', '--paged_state=disable')
print("\nBuilding fp16-plugin-packed engine")
model_spec_obj.use_packed_input()
build_engine(hf_dir,
ckpt_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--remove_input_padding=enable', '--paged_state=disable')
print("\nBuilding fp16-plugin-packed-paged engine")
model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED)
build_engine(hf_dir,
ckpt_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
engine_dir / model_spec_obj.get_model_path() / tp_pp_cp_dir,
'--remove_input_padding=enable', '--paged_state=enable')
print("Done.")
if __name__ == "__main__":
parser = _arg.ArgumentParser()
parser.add_argument("--model_cache",
type=str,
help="Directory where models are stored")
build_engines(**vars(parser.parse_args()))