mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
565 lines
21 KiB
Python
565 lines
21 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Optional
|
|
|
|
import tensorrt as trt
|
|
|
|
from .._common import default_net
|
|
from ..functional import (ACT2FN, AllReduceParams, cast, chunk, concat,
|
|
gemm_swiglu, is_gated_activation,
|
|
low_latency_gemm_swiglu)
|
|
from ..mapping import Mapping
|
|
from ..module import Module
|
|
from ..quantization import QuantMode
|
|
from ..quantization.functional import quantize
|
|
from ..quantization.layers import FP8Linear, FP8RowLinear
|
|
from .linear import ColumnLinear, RowLinear
|
|
from .lora import LoraRuntimeParams
|
|
from .normalization import LayerNorm
|
|
|
|
|
|
def fc_gate_lora(hidden_states, lora, fused_gate_up_lora, lora_layer_params):
|
|
if lora_layer_params is not None:
|
|
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_h_to_4h")
|
|
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate")
|
|
mlp_gate_up_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate_up")
|
|
|
|
if mlp_gate_up_lora_params is not None:
|
|
assert fused_gate_up_lora is not None
|
|
mlp_gate_up_lora = fused_gate_up_lora(hidden_states,
|
|
mlp_gate_up_lora_params)
|
|
return mlp_gate_up_lora
|
|
|
|
elif mlp_fc_lora_params is not None and mlp_gate_lora_params is not None:
|
|
mlp_in_lora_params = LoraRuntimeParams(
|
|
lora_ranks=[
|
|
mlp_fc_lora_params.lora_ranks[0],
|
|
mlp_gate_lora_params.lora_ranks[0]
|
|
],
|
|
lora_weights_pointers=[
|
|
mlp_fc_lora_params.lora_weights_pointers[0],
|
|
mlp_gate_lora_params.lora_weights_pointers[0]
|
|
],
|
|
host_request_types=mlp_fc_lora_params.host_request_types,
|
|
host_context_lengths=mlp_fc_lora_params.host_context_lengths)
|
|
|
|
mlp_fc_lora, mlp_gate_lora = lora(hidden_states, mlp_in_lora_params)
|
|
mlp_in_result = concat([mlp_gate_lora, mlp_fc_lora],
|
|
dim=mlp_fc_lora.rank() - 1)
|
|
return mlp_in_result
|
|
return None
|
|
|
|
|
|
def fc_gate_dora(hidden_states, dora, fused_gate_up_dora, lora_layer_params):
|
|
if lora_layer_params is not None:
|
|
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_h_to_4h")
|
|
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate")
|
|
mlp_gate_up_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate_up")
|
|
|
|
if mlp_gate_up_lora_params is not None:
|
|
assert fused_gate_up_dora is not None
|
|
return fused_gate_up_dora(hidden_states, mlp_gate_up_lora_params)
|
|
|
|
if mlp_fc_lora_params is not None and mlp_gate_lora_params is not None:
|
|
mlp_in_lora_params = LoraRuntimeParams(
|
|
lora_ranks=[
|
|
mlp_fc_lora_params.lora_ranks[0],
|
|
mlp_gate_lora_params.lora_ranks[0]
|
|
],
|
|
lora_weights_pointers=[
|
|
mlp_fc_lora_params.lora_weights_pointers[0],
|
|
mlp_gate_lora_params.lora_weights_pointers[0]
|
|
],
|
|
host_request_types=mlp_fc_lora_params.host_request_types,
|
|
host_context_lengths=mlp_fc_lora_params.host_context_lengths)
|
|
|
|
return dora(hidden_states, mlp_in_lora_params)
|
|
return None
|
|
|
|
|
|
class MLP(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
inner_layernorm=False,
|
|
eps=1e-05,
|
|
is_expert=False,
|
|
):
|
|
super().__init__()
|
|
if hidden_act not in ACT2FN:
|
|
raise ValueError(
|
|
'unsupported activation function: {}'.format(hidden_act))
|
|
fc_output_size = 2 * ffn_hidden_size if hidden_act in [
|
|
'swiglu', 'gegelu'
|
|
] else ffn_hidden_size
|
|
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
|
|
eps=eps) if inner_layernorm else None
|
|
|
|
self.fc = ColumnLinear(hidden_size,
|
|
fc_output_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
is_expert=is_expert)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.hidden_act = hidden_act
|
|
self.dtype = dtype
|
|
self.bias = bias
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.quant_mode = quant_mode
|
|
self.eps = eps
|
|
self.is_expert = is_expert
|
|
# see optimize_model's add_lora for LoRA initialization
|
|
self.lora = None
|
|
self.dora = None
|
|
|
|
def forward(self, hidden_states, lora_layer_params=None, gegelu_limit=None):
|
|
if lora_layer_params is not None:
|
|
assert lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate_up"
|
|
) is None, f"LoRA module 'mlp_gate_up' is not supported in {self}"
|
|
if is_gated_activation(self.hidden_act):
|
|
inter = self.fc(hidden_states)
|
|
lora_result = fc_gate_lora(hidden_states, self.lora, None,
|
|
lora_layer_params)
|
|
if lora_result is not None:
|
|
inter = inter + lora_result
|
|
if self.dora is not None:
|
|
inter = fc_gate_dora(inter, self.dora,
|
|
self.fused_gate_up_dora,
|
|
lora_layer_params)
|
|
else:
|
|
mlp_fc_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_h_to_4h")
|
|
inter = self.fc(hidden_states, mlp_fc_lora_params)
|
|
|
|
mlp_proj_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_4h_to_h")
|
|
|
|
if self.hidden_act == 'gegelu':
|
|
inter = ACT2FN[self.hidden_act](inter, gegelu_limit)
|
|
else:
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
if self.inner_layernorm is not None:
|
|
inter = self.inner_layernorm(inter)
|
|
output = self.proj(inter, lora_runtime_params=mlp_proj_lora_params)
|
|
return output
|
|
|
|
|
|
class GatedMLP(MLP):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
inner_layernorm=False,
|
|
eps=1e-05,
|
|
is_expert=False,
|
|
):
|
|
super().__init__(hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
inner_layernorm=inner_layernorm,
|
|
eps=eps,
|
|
is_expert=is_expert)
|
|
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
|
|
self.gate = ColumnLinear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
lora_layer_params=None,
|
|
all_reduce_params: Optional[AllReduceParams] = None):
|
|
if lora_layer_params is not None:
|
|
assert lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate_up"
|
|
) is None, f"LoRA module 'mlp_gate_up' is not supported in {self}"
|
|
|
|
mlp_fc_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_h_to_4h")
|
|
|
|
mlp_gate_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate")
|
|
|
|
mlp_proj_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_4h_to_h")
|
|
|
|
inter = self.fc(hidden_states, mlp_fc_lora_params)
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
gate = self.gate(hidden_states, mlp_gate_lora_params)
|
|
intermediate = inter * gate
|
|
if self.inner_layernorm is not None:
|
|
intermediate = self.inner_layernorm(intermediate)
|
|
output = self.proj(intermediate,
|
|
lora_runtime_params=mlp_proj_lora_params,
|
|
all_reduce_params=all_reduce_params)
|
|
return output
|
|
|
|
|
|
class FusedGatedMLP(Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
inner_layernorm=False,
|
|
eps=1e-05,
|
|
is_expert=False,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.ffn_hidden_size = ffn_hidden_size
|
|
self.hidden_act = hidden_act
|
|
self.bias = bias
|
|
self.dtype = dtype
|
|
self.tp_group = tp_group
|
|
self.tp_size = tp_size
|
|
self.quant_mode = quant_mode
|
|
|
|
self.fused_fc = ColumnLinear(
|
|
self.hidden_size,
|
|
self.ffn_hidden_size * 2,
|
|
bias=self.bias,
|
|
dtype=self.dtype,
|
|
tp_group=self.tp_group,
|
|
tp_size=self.tp_size,
|
|
gather_output=False,
|
|
)
|
|
self.inner_layernorm = LayerNorm(ffn_hidden_size, dtype=dtype,
|
|
eps=eps) if inner_layernorm else None
|
|
self.proj = RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
is_expert=is_expert)
|
|
|
|
# see optimize_model's add_lora for LoRA initialization
|
|
self.lora = None # used for split up and gate proj
|
|
self.fused_gate_up_lora = None # used for merged up_gate proj
|
|
self.dora = None
|
|
self.fused_gate_up_dora = None
|
|
|
|
def fc_gate_plugin(self, hidden_states, lora_layer_params=None):
|
|
# Combine the following pattern
|
|
#
|
|
# SiLU(FC(x)) * Gate(x)
|
|
#
|
|
# into:
|
|
#
|
|
# SwiGLU(FusedFC(x))
|
|
if default_net(
|
|
).plugin_config.low_latency_gemm_swiglu_plugin is not None:
|
|
p_dtype = default_net().plugin_config.low_latency_gemm_swiglu_plugin
|
|
else:
|
|
p_dtype = default_net().plugin_config.gemm_swiglu_plugin
|
|
use_fp8 = p_dtype == 'fp8'
|
|
assert use_fp8, "gemm_swiglu_plugin and low_latency_gemm_swiglu_plugin only supports fp8 now"
|
|
|
|
if lora_layer_params is not None:
|
|
mlp_fc_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_h_to_4h")
|
|
mlp_gate_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_gate")
|
|
|
|
if mlp_fc_lora_params is not None or mlp_gate_lora_params is not None:
|
|
raise NotImplementedError(
|
|
f"LoRA of splitting fc and gate is not yet implemented for gemm_swiglu_plugin"
|
|
)
|
|
|
|
if self.hidden_act != 'silu':
|
|
raise NotImplementedError(
|
|
f"Activation {self.hidden_act} not yet implemented for gemm_swiglu_plugin"
|
|
)
|
|
|
|
if self.bias:
|
|
raise NotImplementedError(
|
|
f"bias not yet implemented for gemm_swiglu_plugin fp8")
|
|
|
|
assert isinstance(
|
|
self.fused_fc,
|
|
FP8Linear), "fp8 gemm_swiglu only supports fp8 weights"
|
|
assert isinstance(
|
|
self.proj,
|
|
FP8RowLinear), "fp8 gemm_swiglu only supports fp8 weights"
|
|
assert self.fused_fc.weight.shape == (
|
|
self.hidden_size, self.ffn_hidden_size * 2 //
|
|
self.tp_size), "fp8 gemm_swiglu only supports (k, n) weights"
|
|
|
|
scale_d0 = (self.fused_fc.weights_scaling_factor.raw_value.item() *
|
|
self.fused_fc.activation_scaling_factor.raw_value.item())
|
|
scale_d1 = scale_d0
|
|
scale_output = 1.0 / self.proj.activation_scaling_factor.raw_value.item(
|
|
)
|
|
activation_scaling_factor = cast(
|
|
self.fused_fc.activation_scaling_factor.value, self.dtype)
|
|
if hidden_states.dtype != trt.fp8:
|
|
hidden_states = quantize(hidden_states, activation_scaling_factor,
|
|
'fp8')
|
|
|
|
if default_net(
|
|
).plugin_config.low_latency_gemm_swiglu_plugin is not None:
|
|
inter = low_latency_gemm_swiglu(hidden_states,
|
|
self.fused_fc.weight.value,
|
|
scale_d0, scale_d1, scale_output)
|
|
else:
|
|
inter = gemm_swiglu(hidden_states, self.fused_fc.weight.value, None,
|
|
scale_d0, scale_d1, scale_output)
|
|
|
|
lora_result = fc_gate_lora(hidden_states, self.lora,
|
|
self.fused_gate_up_lora, lora_layer_params)
|
|
if lora_result is not None:
|
|
inter = inter + lora_result
|
|
|
|
return inter
|
|
|
|
def fc_gate(self, hidden_states, lora_layer_params=None):
|
|
# Combine the following pattern
|
|
#
|
|
# SiLU(FC(x)) * Gate(x)
|
|
#
|
|
# into:
|
|
#
|
|
# SwiGLU(FusedFC(x))
|
|
#
|
|
# Upside is we don't need to modify 4 different weight loading paths just to concat weights
|
|
|
|
inter = self.fused_fc(hidden_states)
|
|
|
|
lora_result = fc_gate_lora(hidden_states, self.lora,
|
|
self.fused_gate_up_lora, lora_layer_params)
|
|
if lora_result is not None:
|
|
inter = inter + lora_result
|
|
if self.dora is not None:
|
|
inter = fc_gate_dora(inter, self.dora, lora_layer_params)
|
|
|
|
if self.hidden_act == 'silu':
|
|
inter = ACT2FN['swiglu'](inter)
|
|
elif self.hidden_act == 'gelu':
|
|
inter = ACT2FN['geglu'](inter)
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Activation {self.hidden_act} not yet implemented for {self.__class__.__name__}."
|
|
)
|
|
return inter
|
|
|
|
def forward(self,
|
|
hidden_states,
|
|
lora_layer_params=None,
|
|
all_reduce_params: Optional[AllReduceParams] = None):
|
|
if default_net().plugin_config.gemm_swiglu_plugin or default_net(
|
|
).plugin_config.low_latency_gemm_swiglu_plugin:
|
|
inter = self.fc_gate_plugin(hidden_states, lora_layer_params)
|
|
else:
|
|
inter = self.fc_gate(hidden_states, lora_layer_params)
|
|
|
|
if self.inner_layernorm is not None:
|
|
inter = self.inner_layernorm(inter)
|
|
|
|
mlp_proj_lora_params = None
|
|
if lora_layer_params is not None:
|
|
mlp_proj_lora_params = lora_layer_params.get_runtime_params(
|
|
0, "mlp_4h_to_h")
|
|
output = self.proj(inter,
|
|
lora_runtime_params=mlp_proj_lora_params,
|
|
all_reduce_params=all_reduce_params)
|
|
return output
|
|
|
|
|
|
class LinearGELU(Module):
|
|
|
|
def __init__(self,
|
|
dim_in: int,
|
|
dim_out: int,
|
|
approximate: str = 'tanh',
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.proj = ColumnLinear(dim_in,
|
|
dim_out,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size)
|
|
if approximate != 'tanh':
|
|
raise NotImplementedError('GELU only support tanh now.')
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.proj(hidden_states)
|
|
hidden_states = ACT2FN['gelu_pytorch_tanh'](hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class LinearGEGLU(Module):
|
|
|
|
def __init__(self,
|
|
dim_in: int,
|
|
dim_out: int,
|
|
approximate: str = 'tanh',
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.proj = ColumnLinear(dim_in,
|
|
dim_out * 2,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size)
|
|
if approximate != 'tanh':
|
|
raise NotImplementedError('GELU only support tanh now.')
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.proj(hidden_states)
|
|
hidden_states, gate = chunk(hidden_states,
|
|
2,
|
|
dim=(hidden_states.ndim() - 1))
|
|
return hidden_states * ACT2FN['gelu_pytorch_tanh'](gate)
|
|
|
|
|
|
class LinearApproximateGELU(Module):
|
|
|
|
def __init__(self,
|
|
dim_in: int,
|
|
dim_out: int,
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
self.proj = ColumnLinear(dim_in,
|
|
dim_out,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size)
|
|
|
|
def forward(self, x):
|
|
x = self.proj(x)
|
|
return x * ACT2FN['sigmoid'](1.702 * x)
|
|
|
|
|
|
class LinearSwiGLU(Module):
|
|
|
|
def __init__(self,
|
|
dim_in: int,
|
|
dim_out: int,
|
|
bias: bool = True,
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
|
|
self.proj = ColumnLinear(dim_in,
|
|
dim_out * 2,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size)
|
|
self.hidden_act = 'silu'
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.proj(hidden_states)
|
|
hidden_states, gate = chunk(hidden_states,
|
|
2,
|
|
dim=(hidden_states.ndim() - 1))
|
|
return hidden_states * ACT2FN[self.hidden_act](gate)
|
|
|
|
|
|
class LinearActivation(Module):
|
|
|
|
def __init__(self,
|
|
dim_in: int,
|
|
dim_out: int,
|
|
bias: bool = True,
|
|
activation: str = "silu",
|
|
mapping=Mapping(),
|
|
dtype=None):
|
|
super().__init__()
|
|
|
|
self.proj = ColumnLinear(dim_in,
|
|
dim_out,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=mapping.tp_group,
|
|
tp_size=mapping.tp_size)
|
|
self.hidden_act = activation
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.proj(hidden_states)
|
|
return ACT2FN[self.activation](hidden_states)
|