TensorRT-LLMs/cpp/tensorrt_llm/layers/banWordsLayer.cpp
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

144 lines
6.0 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/banWordsLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/banBadWords.h"
#include "tensorrt_llm/kernels/banRepeatNgram.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
BanWordsLayer<T>::BanWordsLayer(DecodingMode const& mode, DecoderDomain const& decoderDomain, cudaStream_t stream,
std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
, mDecodingMode(mode)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BanWordsLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> setupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BanWordsLayer<T>::banRepeatNGrams(Tensor& logits, std::shared_ptr<DynamicDecodeOutputParams> const& outputs,
std::shared_ptr<DynamicDecodeInputParams> const& inputs, SizeType32 const* batchSlots, SizeType32 batchSize,
SizeType32 beamWidth, SizeType32 maxSeqLen, SizeType32 vocabSizePadded, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const max_step = inputs->step;
if (inputs->no_repeat_ngram_size)
{
SizeType32 const* noRepeatNgramSizeBuf
= inputs->no_repeat_ngram_size.value().template getPtr<SizeType32 const>();
invokeBanRepeatNgram(logits.template getPtr<T>(), outputs->output_ids_ptr.template getPtr<TokenIdType const*>(),
reinterpret_cast<FinishedState*>(
inputs->finished.value_or(Tensor{}).template getPtr<FinishedState::UnderlyingType>()),
outputs->parent_ids_ptr.template getPtr<SizeType32 const*>(), batchSlots,
outputs->sequence_length->template getPtr<SizeType32>(), batchSize, beamWidth, maxSeqLen,
inputs->no_repeat_ngram_size.value().template getPtr<SizeType32 const>(), vocabSizePadded, max_step,
stream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BanWordsLayer<T>::banBadWords(Tensor& logits, std::shared_ptr<DynamicDecodeOutputParams> const& outputs,
std::shared_ptr<DynamicDecodeInputParams> const& inputs, SizeType32 const* batchSlots, SizeType32 batchSize,
SizeType32 beamWidth, SizeType32 maxSeqLen, SizeType32 vocabSizePadded, cudaStream_t stream)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const maxBadWordsLength = inputs->max_bad_words_len;
if (maxBadWordsLength)
{
auto const** badWordsPtr = inputs->bad_words_ptr->template getPtr<TokenIdType const*>();
auto const* badWordsLens = inputs->bad_words_lengths->template getPtr<SizeType32>();
invokeBanBadWords((T*) logits.template getPtr<T>(),
outputs->output_ids_ptr.template getPtr<TokenIdType const*>(),
beamWidth > 1 ? outputs->parent_ids_ptr.template getPtr<SizeType32 const*>() : nullptr, batchSlots,
batchSize, beamWidth, badWordsPtr, badWordsLens, maxBadWordsLength, vocabSizePadded,
outputs->sequence_length->template getPtr<SizeType32>(), maxSeqLen, stream);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void BanWordsLayer<T>::forward(
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto inputs = std::dynamic_pointer_cast<DynamicDecodeInputParams>(baseInputs);
auto outputs = std::dynamic_pointer_cast<DynamicDecodeOutputParams>(baseOutputs);
SizeType32 batchSize{0};
SizeType32 beamWidth{0};
SizeType32 vocabSize{0};
auto const maxSeqLen = outputs->output_ids.shape[outputs->output_ids.shape.size() - 1];
auto batchSlots = inputs->batch_slots ? inputs->batch_slots->template getPtr<SizeType32 const>() : nullptr;
if (inputs->logits)
{
auto const& logitsShape = inputs->logits->shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
batchSize = logitsShape[0];
auto const idxOffset = logitsShape.size() - 3;
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
else
{
TLLM_CHECK(inputs->logits_vec->size());
auto const& logitsShape = inputs->logits_vec.value()[0].shape;
TLLM_CHECK(logitsShape.size() == 3 || logitsShape.size() == 4);
auto const idxOffset = logitsShape.size() - 3;
batchSize = inputs->logits_vec->size();
beamWidth = logitsShape[idxOffset + 1];
vocabSize = logitsShape[idxOffset + 2];
}
banRepeatNGrams(
inputs->logits.value(), outputs, inputs, batchSlots, batchSize, beamWidth, maxSeqLen, vocabSize, mStream);
banBadWords(
inputs->logits.value(), outputs, inputs, batchSlots, batchSize, beamWidth, maxSeqLen, vocabSize, mStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class BanWordsLayer<float>;
template class BanWordsLayer<half>;
} // namespace layers
} // namespace tensorrt_llm