TensorRT-LLMs/cpp/tensorrt_llm/layers/topKSamplingLayer.cu
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

297 lines
12 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/defaultDecodingParams.h"
#include "tensorrt_llm/layers/layerUtils.h"
#include "tensorrt_llm/layers/topKSamplingLayer.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <int32_t TOP_K_MAX>
__global__ void setupTopKRuntimeArgs(SizeType32 batchSize, SizeType32 topK, SizeType32* topKs, SizeType32 topKsSize,
float topP, float* topPs, SizeType32 topPsSize, bool* skipDecode, SizeType32 const* batchSlots)
{
auto const index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
for (auto bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
auto k = topKsSize > 1 ? topKs[batchSlot] : topK;
auto p = topPsSize > 1 ? topPs[batchSlot] : topP;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
if (k > 0 && p == 0.0f)
{
// This case corresponds to the old topk sampling, which is equivalent to
// the old topk_topp sampling with topp=1.0f. TopKSamplingLayer and
// TopKTopPSamplingLayer are now merged by TopKSamplingLayer. Thus, we
// replace the case topk>0 and topp=0.0f by topk>0 and topp=1.0f for the
// compatibility.
p = 1.0f;
}
// Clip k value. A topk sampling kernel supports up to TOP_K_MAX.
topKs[batchSlot] = k;
// Clip p value if it is out of range. range = [0.0, 1.0].
topPs[batchSlot] = p;
skipDecode[batchSlot] = k == 0;
}
}
template <typename T>
TopKSamplingLayer<T>::TopKSamplingLayer(
DecoderDomain const& decoderDomain, cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
: BaseLayer(decoderDomain, stream, std::move(allocator))
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
allocateBuffer(mDecoderDomain.getMaxBatchSize());
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
TopKSamplingLayer<T>::~TopKSamplingLayer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
freeBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::allocateBuffer(SizeType32 const batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mWorkspaceSize = getTopKWorkspaceSize<T>(batchSize, 1, TOP_K_MAX, mDecoderDomain.getVocabSizePadded());
std::array<size_t, 4> deviceBufferSizes;
deviceBufferSizes[0] = sizeof(SizeType32) * batchSize;
deviceBufferSizes[1] = sizeof(float) * batchSize;
deviceBufferSizes[2] = sizeof(bool) * batchSize;
deviceBufferSizes[3] = std::max(deviceBufferSizes[0], deviceBufferSizes[1]);
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[0], false);
mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[1], false);
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[2], false);
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[3], false);
mSkipDecodeHost = static_cast<bool*>(std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize));
mAllocatedSize = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
TLLM_LOG_DEBUG("topKSamplingLayer allocated %lu bytes on GPU", mAllocatedSize);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mAllocator->free((void**) (&mRuntimeTopKDevice));
mAllocator->free((void**) (&mRuntimeTopPDevice));
mAllocator->free((void**) (&mSkipDecodeDevice));
mAllocator->free((void**) (&mSetupWorkspaceDevice));
std::free(mSkipDecodeHost);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::setup(SizeType32 batchSize, SizeType32 beamWidth, SizeType32 const* batchSlots,
std::shared_ptr<BaseSetupParams> baseSetupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto setupParams = std::dynamic_pointer_cast<SamplingSetupParams>(baseSetupParams);
auto const defaultTopK = DefaultDecodingParams::getTopK();
auto runtimeTopK = setupParams->runtime_top_k.value_or(std::vector<SizeType32>(batchSize, defaultTopK));
auto runtimeTopP = setupParams->runtime_top_p.value_or(std::vector<float>{});
auto const runtimeTopKSize = runtimeTopK.size();
auto const runtimeTopPSize = runtimeTopP.size();
mNormalizeLogProbs = setupParams->normalize_log_probs.has_value() && setupParams->normalize_log_probs.value();
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& topK : runtimeTopK)
{
if (topK < 0 || topK > TOP_K_MAX)
{
TLLM_LOG_WARNING(
"TopK (%d) is larger than max supported number (%d). Clip to max supported number.", topK, TOP_K_MAX);
topK = std::clamp(topK, 0, static_cast<SizeType32>(TOP_K_MAX));
}
}
auto const topK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK));
auto const topP = (runtimeTopPSize == 0) ? DefaultDecodingParams::getTopP() : runtimeTopP.front();
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
cudaAutoCpy(
reinterpret_cast<runtime::SizeType32*>(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream);
invokeScatterDecodingParams(reinterpret_cast<runtime::SizeType32*>(mSetupWorkspaceDevice), mRuntimeTopKDevice,
batchSlots, batchSize, mStream);
}
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(runtimeTopP.size() == batchSize,
fmtstr("runtimeTopP.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
cudaAutoCpy(reinterpret_cast<float*>(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<float*>(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream);
}
{
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
// support topK up to TOP_K_MAX.
setupTopKRuntimeArgs<TOP_K_MAX><<<grid, block, 0, mStream>>>(batchSize, topK, mRuntimeTopKDevice,
runtimeTopKSize, topP, mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots);
}
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mDecoderDomain.getMaxBatchSize(), mStream);
std::vector<SizeType32> runtimeTopKs(mDecoderDomain.getMaxBatchSize());
cudaAutoCpy(runtimeTopKs.data(), mRuntimeTopKDevice, mDecoderDomain.getMaxBatchSize(), mStream);
{
runtime::SizeType32 maxTopK = 0;
for (SizeType32 bi = 0; bi < batchSize; ++bi)
{
auto bid = bi;
if (batchSlots)
{
bid = batchSlots[bi];
}
maxTopK = std::max(maxTopK, runtimeTopKs[bid]);
}
mRuntimeMaxTopK = std::max(mRuntimeMaxTopK, maxTopK);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopKSamplingLayer<T>::forward(
std::shared_ptr<BaseOutputParams> baseOutputs, std::shared_ptr<BaseInputParams> baseInputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
std::shared_ptr<SamplingInputParams> inputs = std::dynamic_pointer_cast<SamplingInputParams>(baseInputs);
std::shared_ptr<SamplingOutputParams> outputs = std::dynamic_pointer_cast<SamplingOutputParams>(baseOutputs);
auto const batchSize = inputs->logits.shape[0];
auto logits = inputs->logits.template getPtr<T>();
auto endIds = inputs->end_ids.template getPtr<TokenIdType const>();
auto batchSlots = inputs->batch_slots ? inputs->batch_slots->template getPtr<SizeType32 const>() : nullptr;
auto curandStatesDevice = inputs->curand_states;
auto samplingWorkspaceDevice = inputs->sampling_workspace;
auto const probsComputed = inputs->probs_computed;
std::vector<int32_t> batchSlotsVec(batchSize);
std::iota(batchSlotsVec.begin(), batchSlotsVec.end(), 0);
auto batchSlotsHost
= inputs->batch_slots ? inputs->batch_slots->template getPtr<int const>() : batchSlotsVec.data();
auto const skip = allOfBatchSlots(batchSlotsHost, mSkipDecodeHost, batchSize, true);
if (skip)
{
return;
}
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
FinishedState* finishedInput = (inputs->finished)
? reinterpret_cast<FinishedState*>(inputs->finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
FinishedState* finishedOutput = (outputs->finished)
? reinterpret_cast<FinishedState*>(outputs->finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
auto cumLogProbs = (outputs->cum_log_probs) ? outputs->cum_log_probs->template getPtr<float>() : nullptr;
auto outputLogProbs = (outputs->output_log_probs) ? outputs->output_log_probs->template getPtr<float>() : nullptr;
auto sequenceLengths
= (outputs->sequence_length) ? outputs->sequence_length->template getPtr<SizeType32>() : nullptr;
TopKSamplingKernelParams<T> params;
params.logProbs = logits;
params.outputIdsPtrs = outputs->output_ids_ptr.template getPtr<TokenIdType*>();
params.workspace = samplingWorkspaceDevice;
params.maxTopP = 1.0f;
params.topPs = mRuntimeTopPDevice;
params.maxTopK = mRuntimeMaxTopK;
params.topKs = mRuntimeTopKDevice;
params.sequenceLengths = sequenceLengths;
params.endIds = endIds;
params.batchSlots = batchSlots;
params.finishedInput = finishedInput;
params.finishedOutput = finishedOutput;
params.skipDecode = mSkipDecodeDevice;
params.cumLogProbs = cumLogProbs;
params.outputLogProbs = outputLogProbs;
params.curandState = curandStatesDevice;
params.batchSize = batchSize;
params.maxBatchSize = mDecoderDomain.getMaxBatchSize();
params.maxTokensPerStep = 1;
params.vocabSizePadded = mDecoderDomain.getVocabSizePadded();
params.normalizeLogProbs = mNormalizeLogProbs;
params.logitsHasProbs = probsComputed;
invokeBatchTopKSampling(params, mStream);
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class TopKSamplingLayer<float>;
template class TopKSamplingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm