TensorRT-LLMs/cpp/tests/kernels/mixtureOfExpertsTest.cu
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

1424 lines
55 KiB
Plaintext

#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/cutlass_kernels/cutlass_preprocessors.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include <algorithm>
#include <gtest/gtest.h>
#include <numeric>
#include "tensorrt_llm/kernels/mixtureOfExperts/moe_kernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::runtime;
constexpr static float FP8_MAX = 440; // FP8_E4M3_MAX;
__host__ __device__ constexpr float expertShift(int expert, int num_experts)
{
return float(expert) / num_experts;
}
template <class T>
__global__ void initWeightsKernel(T* data, int64_t w, int64_t h, float base, float scale)
{
size_t expert_id = blockIdx.z;
T* start_offset = data + expert_id * w * h;
float expert_shift = scale * expertShift(expert_id, gridDim.z);
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < w && y < h)
{
start_offset[y * w + x] = (x == y) ? T(base * scale + expert_shift) : T(0.f);
}
}
template <class T>
__global__ void initWeightsGatedKernel(T* data, int64_t w, int64_t h, float base_1, float base_2, float scale)
{
size_t expert_id = blockIdx.z;
T* start_offset = data + expert_id * w * h * 2;
float expert_shift = scale * expertShift(expert_id, gridDim.z);
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < w && y < h)
{
start_offset[y * w + x] = (x == y) ? T(base_1 * scale + expert_shift) : T(0.f);
start_offset[(y + h) * w + x] = (x == y) ? T(base_2 * scale + expert_shift) : T(0.f);
}
}
template <class T>
__global__ void initBiasToExpertIdKernel(T* data, int64_t w)
{
size_t expert_id = blockIdx.y;
T* start_offset = data + expert_id * w;
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < w)
start_offset[x] = T(expert_id);
}
template <class T>
__global__ void initBiasToExpertIdGatedKernel(T* data, int64_t w)
{
size_t expert_id = blockIdx.y;
T* start_offset = data + expert_id * w * 2;
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < w)
{
start_offset[x] = T(expert_id);
start_offset[x + w] = T(expert_id + 1);
}
}
#ifdef ENABLE_FP8
using SafeFP8 = __nv_fp8_e4m3;
#else
using SafeFP8 = void;
#endif
template <class TypeTuple_>
class MixtureOfExpertsTest : public ::testing::Test
{
protected:
using DataType = typename TypeTuple_::DataType;
using WeightType = typename TypeTuple_::WeightType;
using OutputType = typename TypeTuple_::OutputType;
constexpr static bool INT4 = std::is_same_v<WeightType, cutlass::uint4b_t>;
constexpr static bool FP8 = std::is_same_v<DataType, SafeFP8>;
constexpr static bool INT_QUANT = !std::is_same_v<DataType, WeightType>;
using WeightStorage = std::conditional_t<INT_QUANT, uint8_t, WeightType>;
constexpr static int WEIGHT_ELEM_PER_BYTE = INT4 ? 2 : 1;
constexpr static int64_t HIDDEN_SIZE_MULTIPLIER = 8;
constexpr static int64_t DEFAULT_HIDDEN_SIZE
= HIDDEN_SIZE_MULTIPLIER * 64 / sizeof(WeightType) * WEIGHT_ELEM_PER_BYTE;
static BufferManager::CudaStreamPtr mStream;
static std::unique_ptr<BufferManager> mBufferManager;
static int mDeviceCount;
std::vector<BufferManager::IBufferPtr> managed_buffers;
float* mInputProbabilities{};
DataType* mInputTensor{};
int64_t mHiddenSize{};
int64_t mNumExperts{};
int64_t mK{};
float getTolerance(float scale = 1.f)
{
// These FP8 tolerances are tuned quite tightly so should pick up any regressions
// Whether the current results are as tight as they should be requires further investigation
// They can be much tighter if we use the same value for all experts (so the scaling factors are trivial)
// But that is hardly representative
bool loose_fp8 = mIsGated || mNormMode == MOEExpertScaleNormalizationMode::RENORMALIZE;
float tol = std::is_same_v<DataType, float> ? 0.001
: std::is_same_v<DataType, half> ? 0.01
: std::is_same_v<DataType, SafeFP8> ? (loose_fp8 ? 0.1 : 0.07)
: 0.1;
// Keep the scale in a sane range
scale = std::clamp(scale, 1.f, 30.f);
return scale * tol;
}
static bool shouldSkip()
{
#ifndef ENABLE_FP8
static_assert(!FP8, "FP8 Tests enabled on unsupported CUDA version");
#endif
bool should_skip_no_device = mDeviceCount <= 0;
bool should_skip_unsupported_fp8 = getSMVersion() < 90 && FP8;
return should_skip_no_device || should_skip_unsupported_fp8;
}
static void SetUpTestCase()
{
mDeviceCount = getDeviceCount();
if (shouldSkip())
{
GTEST_SKIP() << "Skipping due to no/unsupported GPU";
}
mStream = std::make_shared<CudaStream>();
mBufferManager = std::make_unique<BufferManager>(mStream);
}
static void TearDownTestCase()
{
mBufferManager.reset();
mStream.reset();
}
void SetUp() override
{
assert(mBufferManager);
if (shouldSkip())
{
GTEST_SKIP() << "Skipping due to no/unsupported GPU";
}
}
void TearDown()
{
managed_buffers.clear();
}
void initWeights(DataType* buffer, int64_t w, int64_t h, float base, float scalar)
{
dim3 block(16, 16, 1);
dim3 grid(divUp(w, block.x), divUp(h, block.y), mNumExperts);
initWeightsKernel<DataType><<<grid, block, 0, mStream->get()>>>(buffer, w, h, base, scalar);
}
void initBias(DataType* buffer, int64_t w)
{
dim3 block(256, 1, 1);
dim3 grid(divUp(w, block.x), mNumExperts);
initBiasToExpertIdKernel<DataType><<<grid, block, 0, mStream->get()>>>(buffer, w);
}
void initWeightsGated(DataType* buffer, int64_t w, int64_t h, float base_1, float base_2, float scalar)
{
if (!mIsGated)
return initWeights(buffer, w, h, base_1, scalar);
h /= 2;
dim3 block(16, 16, 1);
dim3 grid(divUp(w, block.x), divUp(h, block.y), mNumExperts);
initWeightsGatedKernel<DataType><<<grid, block, 0, mStream->get()>>>(buffer, w, h, base_1, base_2, scalar);
}
void initBiasGated(DataType* buffer, int64_t w)
{
if (!mIsGated)
return initBias(buffer, w);
w /= 2;
dim3 block(256, 1, 1);
dim3 grid(divUp(w, block.x), mNumExperts);
initBiasToExpertIdGatedKernel<DataType><<<grid, block, 0, mStream->get()>>>(buffer, w);
}
CutlassMoeFCRunner<DataType, WeightType, OutputType> mMoERunner{};
char* mWorkspace{};
float* mScaleProbs{};
DataType* mRawExpertWeight1{};
DataType* mRawExpertWeight2{};
WeightStorage* mExpertWeight1{};
WeightStorage* mExpertWeight2{};
DataType* mExpertIntScale1{};
DataType* mExpertIntScale2{};
float mFP8WeightScalar1{1.f};
float mFP8WeightScalar2{1.f};
float* mExpertFP8Scale1{};
float* mExpertFP8Scale2{};
float* mExpertFP8Scale3{};
DataType* mExpertBias1{};
DataType* mExpertBias2{};
void* mTpExpertScratch{}; // Copy the experts here when slicing up inputs
size_t mTpExpertScratchSize{};
OutputType* mFinalOutput{};
int* mSourceToExpandedMap;
int* mSelectedExpert;
bool* mFinished{};
int64_t mInterSize{};
int64_t mTotalTokens{};
int64_t mActiveRows{};
bool mUseBias = true;
bool mIsGated = false;
int64_t mGatedMultiplier = 1;
tensorrt_llm::ActivationType mActType = tensorrt_llm::ActivationType::Relu;
MOEExpertScaleNormalizationMode mNormMode = MOEExpertScaleNormalizationMode::NONE;
std::optional<tensorrt_llm::cutlass_extensions::CutlassGemmConfig> mSelectedConfig = std::nullopt;
// Keep to simple power of two so we can have tight bounds on precision for quantized modes
float const mExpertWDiag1{0.5};
float const mExpertWDiagGated{1};
float const mExpertWDiag2{2};
float mMaxInput{};
template <class T>
T* allocBuffer(size_t size)
{
managed_buffers.emplace_back(mBufferManager->managed(size * sizeof(T)));
EXPECT_EQ(cudaGetLastError(), cudaSuccess) << "Error allocating buffer of size: " << size;
T* ptr = static_cast<T*>(managed_buffers.back()->data());
return ptr;
}
bool checkSufficientTestMemory(int64_t num_tokens, int64_t hidden_size, int64_t num_experts, int64_t k)
{
this->managed_buffers.clear(); // Make sure all the previous buffers are freed
check_cuda_error(cudaDeviceSynchronize()); // Sync to make sure all previous operations are resolved
size_t weight_size = hidden_size * hidden_size * 4 * num_experts * sizeof(WeightType);
// Skip the test if the GPU does not have enough memory
size_t workspace_size = this->mMoERunner.getWorkspaceSize(
num_tokens, hidden_size, hidden_size * 4, num_experts, k, this->mActType, {});
size_t total_size = workspace_size + weight_size * 2;
auto const [freeMem, totalMem] = tensorrt_llm::common::getDeviceMemoryInfo(false);
return freeMem >= total_size;
}
void initBuffersPermute(std::vector<std::vector<DataType>> h_hidden_states,
std::vector<std::vector<float>> h_router_results, int64_t hidden_size, int64_t num_experts, int64_t k,
std::vector<uint8_t> finished, MOEParallelismConfig parallelism_config)
{
managed_buffers.clear();
mHiddenSize = hidden_size;
mInterSize = hidden_size * 4;
mNumExperts = num_experts;
mK = k;
mIsGated = tensorrt_llm::isGatedActivation(mActType);
mGatedMultiplier = mIsGated ? 2 : 1;
auto const gated_inter = mInterSize * mGatedMultiplier;
mTotalTokens = 0;
std::vector<int64_t> h_seq_lens;
h_seq_lens.push_back(0);
for (auto& sequence : h_hidden_states)
{
assert(sequence.size() % hidden_size == 0);
int64_t num_tokens = sequence.size() / hidden_size;
h_seq_lens.emplace_back(h_seq_lens.back() + num_tokens);
mTotalTokens += num_tokens;
}
size_t workspace_size = mMoERunner.getWorkspaceSize(
mTotalTokens, mHiddenSize, mInterSize, mNumExperts, mK, mActType, parallelism_config);
auto const stream = mStream->get();
mWorkspace = allocBuffer<char>(workspace_size);
// Memset to an obviously incorrect value, so we detect any issues with uninitialised fields
check_cuda_error(cudaMemsetAsync(mWorkspace, 0xD5, workspace_size, stream));
size_t const expert_matrix_size = mNumExperts * mHiddenSize * mInterSize;
mRawExpertWeight1 = allocBuffer<DataType>(expert_matrix_size * mGatedMultiplier);
mRawExpertWeight2 = allocBuffer<DataType>(expert_matrix_size);
mTpExpertScratchSize = expert_matrix_size * mGatedMultiplier / parallelism_config.tp_size;
mTpExpertScratchSize += expert_matrix_size / parallelism_config.tp_size;
mExpertBias1 = nullptr;
mExpertBias2 = nullptr;
if (mUseBias)
{
// Allow space for the slice of bias1 in the scratch
mTpExpertScratchSize += mNumExperts * gated_inter / parallelism_config.tp_size;
mExpertBias1 = allocBuffer<DataType>(mNumExperts * gated_inter);
mExpertBias2 = allocBuffer<DataType>(mNumExperts * mHiddenSize);
check_cuda_error(cudaMemsetAsync(mExpertBias1, 0x0, mNumExperts * gated_inter * sizeof(DataType), stream));
check_cuda_error(cudaMemsetAsync(mExpertBias2, 0x0, mNumExperts * mHiddenSize * sizeof(DataType), stream));
}
if constexpr (INT_QUANT)
{
mExpertWeight1 = allocBuffer<WeightStorage>(expert_matrix_size * mGatedMultiplier / WEIGHT_ELEM_PER_BYTE);
mExpertWeight2 = allocBuffer<WeightStorage>(expert_matrix_size / WEIGHT_ELEM_PER_BYTE);
mTpExpertScratchSize += mNumExperts * gated_inter / parallelism_config.tp_size;
mExpertIntScale1 = allocBuffer<DataType>(mNumExperts * gated_inter);
mExpertIntScale2 = allocBuffer<DataType>(mNumExperts * mHiddenSize);
}
else
{
mExpertWeight1 = mRawExpertWeight1;
mExpertWeight2 = mRawExpertWeight2;
}
if constexpr (FP8)
{
mExpertFP8Scale1 = allocBuffer<float>(mNumExperts);
mExpertFP8Scale2 = allocBuffer<float>(1);
mExpertFP8Scale3 = allocBuffer<float>(mNumExperts);
EXPECT_NE(mMaxInput, 0.0f);
initFP8Scales(mMaxInput);
}
mTpExpertScratch = nullptr;
if (parallelism_config.tp_size > 1)
{
mTpExpertScratch = allocBuffer<DataType>(mTpExpertScratchSize);
}
mActiveRows = mTotalTokens;
mFinished = nullptr;
if (!finished.empty())
{
mFinished = allocBuffer<bool>(mTotalTokens);
check_cuda_error(cudaMemcpyAsync(
mFinished, finished.data(), mTotalTokens * sizeof(bool), cudaMemcpyHostToDevice, stream));
static_assert(sizeof(bool) == sizeof(uint8_t), "Test assumes bool is interchangeable with uint8_t");
mActiveRows = std::count(finished.begin(), finished.end(), 0);
}
mInputProbabilities = allocBuffer<float>(mTotalTokens * mNumExperts);
mScaleProbs = allocBuffer<float>(mTotalTokens * mK);
mInputTensor = allocBuffer<DataType>(mTotalTokens * mHiddenSize);
mFinalOutput = allocBuffer<OutputType>(mTotalTokens * mHiddenSize);
mSourceToExpandedMap = allocBuffer<int>(mTotalTokens * mK);
mSelectedExpert = allocBuffer<int>(mTotalTokens * mK);
auto* input_probs_ptr = mInputProbabilities;
for (auto& sequence : h_router_results)
{
check_cuda_error(cudaMemcpyAsync(
input_probs_ptr, sequence.data(), sequence.size() * sizeof(float), cudaMemcpyHostToDevice, stream));
input_probs_ptr += sequence.size();
}
auto* hidden_states_ptr = mInputTensor;
for (auto& sequence : h_hidden_states)
{
check_cuda_error(cudaMemcpyAsync(hidden_states_ptr, sequence.data(), sequence.size() * sizeof(DataType),
cudaMemcpyHostToDevice, stream));
hidden_states_ptr += sequence.size();
}
check_cuda_error(cudaStreamSynchronize(stream));
// Init the diagonals of our matrix, this will set to the scalar value
initWeightsGated(
mRawExpertWeight1, mHiddenSize, gated_inter, mExpertWDiag1, mExpertWDiagGated, mFP8WeightScalar1);
initWeights(mRawExpertWeight2, mInterSize, mHiddenSize, mExpertWDiag2, mFP8WeightScalar2);
if (mUseBias)
{
initBiasGated(mExpertBias1, gated_inter);
initBias(mExpertBias2, mHiddenSize);
}
if constexpr (INT_QUANT)
{
cutlass_kernels::QuantType quant_type
= INT4 ? cutlass_kernels::QuantType::W4_A16 : cutlass_kernels::QuantType::W8_A16;
std::vector<size_t> shape1{(size_t) mNumExperts, (size_t) mHiddenSize, (size_t) gated_inter};
std::vector<size_t> shape2{(size_t) mNumExperts, (size_t) mInterSize, (size_t) mHiddenSize};
doIntQuant(quant_type, shape1, mRawExpertWeight1, mExpertIntScale1, mExpertWeight1);
doIntQuant(quant_type, shape2, mRawExpertWeight2, mExpertIntScale2, mExpertWeight2);
}
check_cuda_error(cudaStreamSynchronize(stream));
}
void doIntQuant(cutlass_kernels::QuantType quant_type, std::vector<size_t> shape, DataType* inputs,
DataType* scales, uint8_t* outputs)
{
// Runs on the CPU, must be after stream sync
if constexpr (INT_QUANT)
{
size_t elems = std::reduce(shape.begin(), shape.end(), 1, std::multiplies{});
std::vector<int8_t> h_out(elems);
std::vector<DataType> h_input(elems);
std::vector<DataType> h_scales(shape[0] * shape[2]);
check_cuda_error(cudaMemcpy(h_input.data(), inputs, elems * sizeof(DataType), cudaMemcpyDeviceToHost));
cutlass_kernels::symmetric_quantize(h_out.data(), h_scales.data(), h_input.data(), shape, quant_type, true);
check_cuda_error(cudaMemcpy(
outputs, h_out.data(), elems * sizeof(int8_t) / WEIGHT_ELEM_PER_BYTE, cudaMemcpyHostToDevice));
check_cuda_error(
cudaMemcpy(scales, h_scales.data(), h_scales.size() * sizeof(DataType), cudaMemcpyHostToDevice));
}
}
constexpr static float getFP8Scalar(float in)
{
return FP8_MAX / in;
}
void initFP8Scales(float max_input)
{
check_cuda_error(cudaStreamSynchronize(mStream->get()));
// Add shift to the max because we add an adjustment for each expert so they get different results.
float max_shift = expertShift(mNumExperts - 1, mNumExperts);
float maxW1 = max_shift + (mIsGated ? std::max(mExpertWDiag1, mExpertWDiagGated) : mExpertWDiag1);
float maxW2 = max_shift + mExpertWDiag2;
float scaleW1 = getFP8Scalar(maxW1);
float scaleW2 = getFP8Scalar(maxW2);
mFP8WeightScalar1 = scaleW1;
mFP8WeightScalar2 = scaleW2;
float scaleAct1 = getFP8Scalar(max_input);
float maxFC1Output = calcMLPVal(max_input, mNumExperts - 1) / maxW2;
float scaleAct2 = getFP8Scalar(maxFC1Output);
ASSERT_NE(mExpertFP8Scale1, nullptr);
ASSERT_NE(mExpertFP8Scale2, nullptr);
ASSERT_NE(mExpertFP8Scale3, nullptr);
// Dequant values for each expert are 1/(w_i*a_i) calculated above
std::fill_n(mExpertFP8Scale1, mNumExperts, 1.f / (scaleW1 * scaleAct1));
std::fill_n(mExpertFP8Scale3, mNumExperts, 1.f / (scaleW2 * scaleAct2));
*mExpertFP8Scale2 = scaleAct2;
check_cuda_error(cudaStreamSynchronize(mStream->get()));
}
void resetOutBuffers()
{
auto stream = mStream->get();
if (mTpExpertScratch)
check_cuda_error(cudaMemsetAsync(mTpExpertScratch, 0x0, mTpExpertScratchSize, stream));
check_cuda_error(cudaMemsetAsync(mFinalOutput, 0x0, mTotalTokens * mHiddenSize * sizeof(DataType), stream));
check_cuda_error(cudaMemsetAsync(mSourceToExpandedMap, 0x0, sizeof(int) * mTotalTokens * mK, stream));
check_cuda_error(cudaMemsetAsync(mSelectedExpert, 0x0, sizeof(int) * mTotalTokens * mK, stream));
check_cuda_error(cudaMemsetAsync(mScaleProbs, 0x0, sizeof(float) * mTotalTokens * mK, stream));
check_cuda_error(cudaStreamSynchronize(stream));
}
void resizeRouterInputs(
std::vector<std::vector<float>>& h_router_results, int64_t num_experts, int64_t num_tokens_per_seq)
{
for (int64_t i = 0; i < h_router_results.size(); i++)
{
auto& seq_routing = h_router_results[i];
int64_t num_tokens = num_tokens_per_seq;
auto hardcoded_experts = seq_routing.size() / num_tokens;
ASSERT_EQ(seq_routing.size(), hardcoded_experts * num_tokens);
if (num_experts > hardcoded_experts)
{
auto pos = seq_routing.begin() + hardcoded_experts;
for (int64_t i = 0; i < num_tokens; i++, pos += num_experts)
{
pos = seq_routing.insert(pos, num_experts - hardcoded_experts, 0);
}
}
ASSERT_EQ(seq_routing.size(), num_experts * num_tokens);
}
}
template <class T>
auto populateTokens(std::vector<T>& hidden_states)
{
if constexpr (std::is_same_v<T, SafeFP8>)
{
std::vector<OutputType> internal_states(hidden_states.size());
populateTokens(internal_states);
mMaxInput = *std::max_element(internal_states.begin(), internal_states.end());
float scalar = getFP8Scalar(mMaxInput);
std::transform(internal_states.begin(), internal_states.end(), hidden_states.begin(),
[scalar](OutputType in) -> T { return static_cast<T>((float) in * scalar); });
// Do the reverse transformation since we only have so much precision and this is a pretty broad range
std::transform(hidden_states.begin(), hidden_states.end(), internal_states.begin(),
[scalar](T in) -> OutputType { return static_cast<OutputType>(((float) in) / scalar); });
return internal_states;
}
else
{
std::vector<float> base(hidden_states.size());
std::iota(base.begin(), base.end(), 0.0f);
// Lambda subtracts a small value so we have some < 0 to test the activation for negatives
std::transform(base.begin(), base.end(), hidden_states.begin(),
[l = hidden_states.size()](auto a) { return T(a / l) - T(0.01f); });
return hidden_states;
}
}
void runMoEPermute(std::vector<std::vector<DataType>> h_hidden_states,
std::vector<std::vector<float>> h_router_results, int64_t hidden_size, int64_t num_experts, int64_t k,
std::vector<uint8_t> finished = {}, MOEParallelismConfig parallelism_config = {})
{
initBuffersPermute(std::move(h_hidden_states), std::move(h_router_results), hidden_size, num_experts, k,
finished, parallelism_config);
runMoEPermute(parallelism_config);
}
auto getWeights(MOEParallelismConfig parallelism_config)
{
void* scale_1 = FP8 ? (void*) mExpertFP8Scale1 : (void*) mExpertIntScale1;
void* scale_2 = FP8 ? (void*) mExpertFP8Scale2 : (void*) mExpertIntScale2;
void* scale_3 = FP8 ? mExpertFP8Scale3 : nullptr;
if (parallelism_config.tp_size > 1)
{
int const tp_size = parallelism_config.tp_size;
int const tp_rank = parallelism_config.tp_rank;
size_t const matrix_size = mHiddenSize * mInterSize / tp_size;
size_t const gated_matrix_size = mHiddenSize * mInterSize * mGatedMultiplier / tp_size;
size_t const row_size_inter = mInterSize / tp_size;
size_t const gated_row_size_inter = mInterSize * mGatedMultiplier / tp_size;
size_t const gated_bias_size = mUseBias ? gated_row_size_inter : 0;
auto* weight_1 = reinterpret_cast<WeightStorage*>(mTpExpertScratch);
auto* weight_2 = weight_1 + mNumExperts * gated_matrix_size;
auto* bias_1 = reinterpret_cast<DataType*>(weight_2 + mNumExperts * matrix_size);
auto* int_scale_1 = bias_1 + mNumExperts * gated_bias_size;
// 2D memcpy just the slices we care about
// TODO Re-quantize here with matrices divided
size_t const row_size_1 = matrix_size * sizeof(WeightStorage) / WEIGHT_ELEM_PER_BYTE;
check_cuda_error(cudaMemcpy2DAsync(weight_1, row_size_1, (uint8_t*) mExpertWeight1 + row_size_1 * tp_rank,
row_size_1 * tp_size, row_size_1, mNumExperts * mGatedMultiplier, cudaMemcpyDeviceToDevice,
mStream->get()));
size_t const row_size_2 = row_size_inter * sizeof(WeightStorage) / WEIGHT_ELEM_PER_BYTE;
check_cuda_error(cudaMemcpy2DAsync(weight_2, row_size_2, (uint8_t*) mExpertWeight2 + row_size_2 * tp_rank,
row_size_2 * tp_size, row_size_2, mNumExperts * mHiddenSize, cudaMemcpyDeviceToDevice, mStream->get()));
if (mUseBias)
{
size_t const row_size_bias = row_size_inter * sizeof(DataType);
check_cuda_error(cudaMemcpy2DAsync(bias_1, row_size_bias,
(uint8_t*) mExpertBias1 + row_size_bias * tp_rank, row_size_bias * tp_size, row_size_bias,
mNumExperts * mGatedMultiplier, cudaMemcpyDeviceToDevice, mStream->get()));
}
if constexpr (INT_QUANT)
{
scale_2 = mExpertIntScale2;
size_t const row_size_scale = row_size_inter * sizeof(DataType);
check_cuda_error(cudaMemcpy2DAsync(scale_1, row_size_scale,
(uint8_t*) mExpertIntScale1 + row_size_scale * tp_rank, row_size_scale * tp_size, row_size_scale,
mNumExperts * mGatedMultiplier, cudaMemcpyDeviceToDevice, mStream->get()));
}
bias_1 = mUseBias ? bias_1 : nullptr;
return std::tuple{weight_1, weight_2, bias_1, mExpertBias2, scale_1, scale_2, scale_3};
}
else if (parallelism_config.ep_size > 1)
{
size_t const gated_inter = mInterSize * mGatedMultiplier;
size_t const experts_per_node = mNumExperts / parallelism_config.ep_size;
size_t const weight_matrix_size = mHiddenSize * mInterSize * experts_per_node / WEIGHT_ELEM_PER_BYTE;
size_t const bias_fc1_size = gated_inter * experts_per_node;
size_t const bias_fc2_size = mHiddenSize * experts_per_node;
size_t const scale1_size = gated_inter * experts_per_node;
size_t const scale2_size = mHiddenSize * experts_per_node;
auto* weight1_ptr = mExpertWeight1 + weight_matrix_size * mGatedMultiplier * parallelism_config.ep_rank;
auto* weight2_ptr = mExpertWeight2 + weight_matrix_size * parallelism_config.ep_rank;
auto* bias1_ptr = mUseBias ? mExpertBias1 + bias_fc1_size * parallelism_config.ep_rank : nullptr;
auto* bias2_ptr = mUseBias ? mExpertBias2 + bias_fc2_size * parallelism_config.ep_rank : nullptr;
if (INT_QUANT)
{
scale_1 = mExpertIntScale1 + scale1_size * parallelism_config.ep_rank;
scale_2 = mExpertIntScale2 + scale2_size * parallelism_config.ep_rank;
}
if constexpr (FP8)
{
scale_1 = mExpertFP8Scale1 + experts_per_node * parallelism_config.ep_rank;
scale_3 = mExpertFP8Scale3 + experts_per_node * parallelism_config.ep_rank;
}
return std::tuple{weight1_ptr, weight2_ptr, bias1_ptr, bias2_ptr, scale_1, scale_2, scale_3};
}
return std::tuple{mExpertWeight1, mExpertWeight2, mExpertBias1, mExpertBias2, scale_1, scale_2, scale_3};
}
void runMoEPermute(MOEParallelismConfig parallelism_config)
{
// Clear the buffers to blank so we can assume zero if not written
resetOutBuffers();
auto const [weight1_ptr, weight2_ptr, bias1_ptr, bias2_ptr, scale1_ptr, scale2_ptr, scale3_ptr]
= getWeights(parallelism_config);
auto stream = mStream->get();
auto tactic = mSelectedConfig;
if (!tactic)
{
int sm = getSMVersion();
bool is_sm90 = sm >= 90 && !INT_QUANT;
auto tactics = mMoERunner.getTactics();
auto it = std::find_if(tactics.begin(), tactics.end(), [is_sm90](auto& c) { return c.is_sm90 == is_sm90; });
if (it == tactics.end())
{
// Fall back to any tactic
std::cout << "WARNING: Could not find config for sm version " << sm << std::endl;
tactic = tactics[0];
}
else
{
tactic = *it;
}
}
QuantParams quant_params;
if constexpr (INT_QUANT)
{
quant_params = QuantParams::Int(scale1_ptr, scale2_ptr);
}
else
{
quant_params = QuantParams::FP8(static_cast<float const*>(scale1_ptr),
static_cast<float const*>(scale2_ptr), static_cast<float const*>(scale3_ptr));
}
mMoERunner.setTactic(tactic);
mMoERunner.runMoe(mInputTensor, mInputProbabilities, weight1_ptr, bias1_ptr, mActType, weight2_ptr, bias2_ptr,
quant_params, mTotalTokens, mHiddenSize, mInterSize / parallelism_config.tp_size, mNumExperts, mK,
mWorkspace, mFinalOutput, mFinished, mActiveRows, mScaleProbs, mSourceToExpandedMap, mSelectedExpert,
parallelism_config, mNormMode, stream);
check_cuda_error(cudaStreamSynchronize(stream));
}
template <class T>
std::vector<T> getDataFromDevice(T const* in, size_t length)
{
std::vector<T> data(length);
auto const stream = mStream->get();
check_cuda_error(cudaMemcpyAsync(data.data(), in, length * sizeof(T), cudaMemcpyDeviceToHost, stream));
check_cuda_error(cudaStreamSynchronize(mStream->get()));
return data;
}
auto maskSelectedExpertsForTP(std::vector<int> const& vector, int tp_size, int tp_rank)
{
std::vector<int> result;
int num_experts_per_node = mNumExperts / tp_size;
std::transform(vector.begin(), vector.end(), std::back_inserter(result),
[=](int entry)
{
if (entry >= num_experts_per_node * tp_rank && entry < num_experts_per_node * (tp_rank + 1))
return entry;
return (int) mNumExperts;
});
return result;
}
void debugPrint()
{
#define PRINT_CAST(array, size, cast) \
do \
if (array) \
{ \
auto data = getDataFromDevice(array, size); \
std::cout << #array << ": "; \
for (auto v : data) \
{ \
if (cast(v)) \
std::cout << cast(v) << ", "; \
else \
std::cout << "., "; \
} \
std::cout << std::endl; \
} \
while (0)
#define PRINT(array, size) PRINT_CAST(array, size, )
using WeightPrintType = std::conditional_t<INT_QUANT, uint8_t, WeightStorage>;
PRINT_CAST((WeightPrintType*) mExpertWeight1,
mNumExperts * mHiddenSize * mInterSize * mGatedMultiplier / WEIGHT_ELEM_PER_BYTE, float);
PRINT_CAST(
(WeightPrintType*) mExpertWeight2, mNumExperts * mHiddenSize * mInterSize / WEIGHT_ELEM_PER_BYTE, float);
// PRINT_CAST(mRawExpertWeight1, mNumExperts * mHiddenSize * mInterSize * mGatedMultiplier, float);
// PRINT_CAST(mRawExpertWeight2, mNumExperts * mHiddenSize * mInterSize, float);
PRINT_CAST(mExpertBias1, mNumExperts * mInterSize * mGatedMultiplier, float);
PRINT_CAST(mExpertBias2, mNumExperts * mHiddenSize, float);
PRINT_CAST(mExpertIntScale1, mNumExperts * mInterSize * mGatedMultiplier, float);
PRINT_CAST(mExpertIntScale2, mNumExperts * mHiddenSize, float);
PRINT(mFinalOutput, mTotalTokens * mHiddenSize);
PRINT_CAST((uint8_t*) mFinished, mTotalTokens, (int) );
PRINT(mInputProbabilities, mTotalTokens * mNumExperts);
PRINT(mScaleProbs, mTotalTokens * mK);
PRINT(mInputProbabilities, mTotalTokens * mNumExperts);
PRINT_CAST(mInputTensor, mTotalTokens * mHiddenSize, float);
PRINT(mSourceToExpandedMap, mTotalTokens * mK);
PRINT(mSelectedExpert, mTotalTokens * mK);
#undef PRINT_CAST
#undef PRINT
}
template <class T>
T actfn(T in)
{
if (mActType == tensorrt_llm::ActivationType::Identity)
return in;
if (mActType == tensorrt_llm::ActivationType::Relu)
return std::max(in, T(0.0f));
if (mActType == tensorrt_llm::ActivationType::Gelu || mActType == tensorrt_llm::ActivationType::Geglu)
return (std::erf(float(in) * float(sqrt(0.5))) + 1) * 0.5f * float(in);
assert(false);
return in;
}
float calcMLPVal(float input, int expert_id, bool final_bias = false)
{
if (expert_id >= mNumExperts)
return 0;
float expert_shift = expertShift(expert_id, mNumExperts);
float w1_bias = mUseBias ? expert_id : 0.f;
float activated = 0;
if (mIsGated)
{
float scalar = mExpertWDiag1 + expert_shift;
float fc1 = (float) input * scalar + (float) w1_bias;
float gated_scalar = mExpertWDiagGated + expert_shift;
float gated_bias = mUseBias ? (float) w1_bias + 1.f : 0.f;
float gate = (float) input * gated_scalar + gated_bias;
activated = fc1 * actfn(gate);
}
else
{
float scalar = mExpertWDiag1 + expert_shift;
float fc1 = input * scalar + w1_bias;
activated = actfn(fc1);
}
EXPECT_TRUE(mUseBias || !final_bias);
float result = activated * (mExpertWDiag2 + expert_shift) + (float) (final_bias ? expert_id : 0);
return result;
}
float calcMLPValWithFinalBias(float input, int expert_id)
{
return calcMLPVal(input, expert_id, mUseBias);
}
// NOTE This is a useful function for debugging routing failures. But you need to know the exact offset of
// this info in the workspace so having a test depend on something so internal is suboptimal
//
// void comparePermuted(const std::vector<int>& expected_experts, const std::vector<int>& expected_permutation,
// const std::vector<DataType>& input_data)
//{
// auto states = getDataFromDevice(magic incantation into workspace, mTotalTokens * mK * mHiddenSize);
//
// // Loop for the number of times each token is duplicated
// for (int k_idx = 0; k_idx < mK; k_idx++)
// {
// for (int64_t token_id = 0; token_id < mTotalTokens; token_id++)
// {
// // Permutation has the position of the first copy of all token,
// // followed by the position of the second copy of all tokens etc.
// const int64_t permuted_position = expected_permutation[k_idx * mTotalTokens + token_id];
//
// // Expected experts has all the selected experts for token one,
// // followed by all the selected experts for token two etc.
// const int64_t expert_id = expected_experts[token_id * mK + k_idx];
//
// // Compare the copied tokens with the projection applied
// for (int64_t hidden_id = 0; hidden_id < mHiddenSize; hidden_id++)
// {
// auto ref = calcMLPVal(input_data[token_id * mHiddenSize + hidden_id], expert_id);
// auto actual = states[permuted_position * mHiddenSize + hidden_id];
// ASSERT_NEAR(ref, actual, getTolerance(ref))
// << "Incorrect value at position: mK: " << k_idx << ", token: " << token_id
// << ", permuted dest: " << permuted_position << ", expert id: " << expert_id
// << ", hidden id: " << hidden_id;
// }
// }
// }
//}
std::vector<float> softmax(std::vector<float> const& expected_probs)
{
std::vector<float> softmax;
// All values we test are 0-1 so we can skip the normalization step
std::transform(expected_probs.begin(), expected_probs.end(), std::back_inserter(softmax),
[&](float const in) -> float
{
auto res = exp(in);
return res;
});
for (int64_t token = 0; token < mTotalTokens; token++)
{
auto start = softmax.begin() + token * mNumExperts;
auto end = start + mNumExperts;
auto sum = std::accumulate(start, end, 0.f);
std::transform(start, end, start, [=](auto in) { return in / sum; });
}
return softmax;
}
void compareSoftmax(std::vector<int> const& expected_experts, std::vector<float> const& expected_probs,
std::vector<float> scale_probs = {})
{
if (scale_probs.empty())
scale_probs = getDataFromDevice(mScaleProbs, mTotalTokens * mK);
auto softmax_probs = softmax(expected_probs);
for (int64_t token_id = 0; token_id < mTotalTokens; token_id++)
{
for (int k_idx = 0; k_idx < mK; k_idx++)
{
int selected_expert = expected_experts[token_id * mK + k_idx];
if (selected_expert < mNumExperts) // Ignore 'finished' values
{
ASSERT_NEAR(softmax_probs[token_id * mNumExperts + selected_expert],
scale_probs[token_id * mK + k_idx], getTolerance())
<< "Scales mismatched for token: " << token_id << " k: " << k_idx
<< " selected_expert: " << selected_expert;
}
}
}
}
void renormScales(float* probs, int const* experts)
{
if (mNormMode == MOEExpertScaleNormalizationMode::NONE)
return;
float sum = 0;
for (int k_idx = 0; k_idx < mK; k_idx++)
{
sum += probs[experts[k_idx]];
}
float norm_factor = 1.0f / sum;
for (int k_idx = 0; k_idx < mK; k_idx++)
{
probs[experts[k_idx]] *= norm_factor;
}
}
void compareFinal(std::vector<int> const& expected_experts, std::vector<float> const& expected_probs,
std::vector<OutputType> const& input_data, std::vector<OutputType> final_results = {})
{
if (final_results.empty())
final_results = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize);
auto softmax_probs = softmax(expected_probs);
for (int64_t token_id = 0; token_id < mTotalTokens; token_id++)
{
renormScales(&softmax_probs[token_id * mNumExperts], &expected_experts[token_id * mK]);
for (int64_t hidden_id = 0; hidden_id < mHiddenSize; hidden_id++)
{
float sum = 0.0f;
// Loop for the number of times each token is duplicated
for (int k_idx = 0; k_idx < mK; k_idx++)
{
int selected_expert = expected_experts[token_id * mK + k_idx];
sum += float(calcMLPValWithFinalBias(
static_cast<float>(input_data[token_id * mHiddenSize + hidden_id]), selected_expert))
* softmax_probs[token_id * mNumExperts + selected_expert];
}
ASSERT_NEAR(OutputType{sum}, final_results[token_id * mHiddenSize + hidden_id], getTolerance(sum))
<< "Incorrect final value at position: " << token_id * mHiddenSize + hidden_id;
}
}
}
void BasicPermuteTest(int k = 1, int64_t hidden_size = DEFAULT_HIDDEN_SIZE);
std::vector<int> calcPermuteMapExpertParallel(std::vector<int> const& expected_experts);
void ExpertParallelTest(int k = 1);
void TensorParallelTest(int k = 1);
};
template <class WeightParams>
using LargeMixtureOfExpertsTest = MixtureOfExpertsTest<WeightParams>;
template <class DataType_, class WeightType_ = DataType_, class OutputType_ = DataType_>
struct WeightParams
{
using DataType = DataType_;
using WeightType = WeightType_;
using OutputType = OutputType_;
};
// TODO Fix int quantized
using Types = ::testing::Types<
#ifdef ENABLE_BF16
WeightParams<__nv_bfloat16>,
#endif
#ifdef ENABLE_FP8
WeightParams<SafeFP8, SafeFP8, half>,
#endif
WeightParams<half>, WeightParams<float>
//, WeightParams<half, uint8_t>, WeightParams<half, cutlass::uint4b_t>
>;
TYPED_TEST_SUITE(MixtureOfExpertsTest, Types);
// Have a separate test with only one data type because this test is long
TYPED_TEST_SUITE(LargeMixtureOfExpertsTest, ::testing::Types<WeightParams<half>>);
template <class TypeParam_>
BufferManager::CudaStreamPtr MixtureOfExpertsTest<TypeParam_>::mStream{};
template <class TypeParam_>
std::unique_ptr<BufferManager> MixtureOfExpertsTest<TypeParam_>::mBufferManager{};
template <class TypeParam_>
int MixtureOfExpertsTest<TypeParam_>::mDeviceCount{};
template <class TypeParam_>
void MixtureOfExpertsTest<TypeParam_>::BasicPermuteTest(int k, int64_t hidden_size)
{
if constexpr (FP8)
{
// TODO Remove this when bias + FP8 is supported
mUseBias = false;
}
int64_t num_experts = 4;
int64_t num_tokens = 3;
std::vector<DataType> hidden_states(hidden_size * num_tokens);
auto raw_unquant_input = populateTokens(hidden_states);
std::vector<float> probs = {
0.5, 0.1, 0.25, 0.15, //
0.03, 0.2, 0.07, 0.7, //
0.25, 0.21, 0.35, 0.19, //
};
std::vector<std::vector<DataType>> hidden_input = {hidden_states};
std::vector<std::vector<float>> router_input = {probs};
resizeRouterInputs(router_input, num_experts, num_tokens);
runMoEPermute(hidden_input, router_input, hidden_size, num_experts, k);
std::vector<int> expected_experts{0, 3, 2};
if (k == 2)
expected_experts = {0, 2, 3, 1, 2, 0};
else if (k == 3)
expected_experts = {0, 2, 3, 3, 1, 2, 2, 0, 1};
auto selected_expert = getDataFromDevice(mSelectedExpert, num_tokens * k);
EXPECT_EQ(selected_expert, expected_experts);
auto proj_map = getDataFromDevice(mSourceToExpandedMap, num_tokens * k);
// This is the final position of:
// Token 1 Expert 1, T2E1, T3E1, T1E2, T2E2, T3E2
std::vector<int> permute_map{0, 2, 1};
if (k == 2)
permute_map = {0, 5, 4, 3, 2, 1};
if (k == 3)
permute_map = {0, 8, 6, 4, 2, 1, 7, 5, 3};
ASSERT_EQ(permute_map, proj_map);
compareSoftmax(selected_expert, router_input[0]);
compareFinal(selected_expert, router_input[0], raw_unquant_input);
}
TYPED_TEST(MixtureOfExpertsTest, Permute)
{
this->BasicPermuteTest();
}
TYPED_TEST(MixtureOfExpertsTest, PermuteK2)
{
this->BasicPermuteTest(2);
}
TYPED_TEST(MixtureOfExpertsTest, PermuteK3)
{
this->BasicPermuteTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, PermuteNoBias)
{
this->mUseBias = false;
this->BasicPermuteTest();
this->BasicPermuteTest(2);
this->BasicPermuteTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, PermuteRenormalization)
{
this->mNormMode = tensorrt_llm::kernels::MOEExpertScaleNormalizationMode::RENORMALIZE;
this->BasicPermuteTest();
this->BasicPermuteTest(2);
this->BasicPermuteTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, PermuteGeglu)
{
this->mActType = tensorrt_llm::ActivationType::Geglu;
this->BasicPermuteTest();
this->BasicPermuteTest(2);
this->BasicPermuteTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, Finished)
{
if (this->FP8)
{
// TODO Remove this when bias + FP8 is supported
this->mUseBias = false;
}
using DataType = typename TypeParam::DataType;
int64_t hidden_size = this->DEFAULT_HIDDEN_SIZE;
int64_t num_experts = 4;
int64_t num_tokens = 3;
int64_t k = 2;
std::vector<DataType> hidden_states(hidden_size * num_tokens);
auto raw_unquant_input = this->populateTokens(hidden_states);
std::vector<float> probs = {
0.5, 0.1, 0.25, 0.15, //
0.05, 0.2, 0.05, 0.7, //
0.25, 0.2, 0.35, 0.2, //
};
this->runMoEPermute({hidden_states}, {probs}, hidden_size, num_experts, k, {0, 0, 1});
auto selected_expert = this->getDataFromDevice(this->mSelectedExpert, num_tokens * k);
// Token 1
EXPECT_EQ(selected_expert[0], 0);
EXPECT_EQ(selected_expert[1], 2);
// Token 2
EXPECT_EQ(selected_expert[2], 3);
EXPECT_EQ(selected_expert[3], 1);
// Token 3
EXPECT_EQ(selected_expert[4], num_experts); // One past the end
EXPECT_EQ(selected_expert[5], num_experts);
auto proj_map = this->getDataFromDevice(this->mSourceToExpandedMap, num_tokens * k);
// This is the final position of:
// Token 1 Expert 1, T2E1, T3E1, T1E2, T2E2, T3E3
std::vector<int> permute_map{0, 3, 4, 2, 1, 5};
ASSERT_EQ(permute_map, proj_map);
this->compareSoftmax(selected_expert, probs);
this->compareFinal(selected_expert, probs, raw_unquant_input);
}
template <class TypeParam_>
std::vector<int> MixtureOfExpertsTest<TypeParam_>::calcPermuteMapExpertParallel(
std::vector<int> const& expected_experts)
{
std::vector<int> map(expected_experts.size());
auto getInterleavedIndex = [this](int i) { return (i % mK) * mTotalTokens + i / mK; };
int map_idx = 0;
for (int expert = 0; expert <= mNumExperts; expert++)
{
for (int i = 0; i < map.size(); i++)
{
if (expected_experts[i] == expert)
map[getInterleavedIndex(i)] = map_idx++;
}
}
return map;
}
template <class TypeParam_>
void MixtureOfExpertsTest<TypeParam_>::ExpertParallelTest(int k)
{
if (FP8)
{
// TODO Remove this when bias + FP8 is supported
mUseBias = false;
}
int64_t hidden_size = DEFAULT_HIDDEN_SIZE;
int64_t parallelism = 2;
int64_t num_experts = 4;
int64_t num_tokens = 3;
std::vector<DataType> hidden_states(hidden_size * num_tokens);
auto raw_unquant_input = populateTokens(hidden_states);
std::vector<float> probs = {
0.5, 0.1, 0.25, 0.15, //
0.03, 0.2, 0.07, 0.7, //
0.25, 0.21, 0.35, 0.19, //
};
std::vector<int> expected_experts{0, 3, 2};
if (k == 2)
expected_experts = {0, 2, 3, 1, 2, 0};
else if (k == 3)
expected_experts = {0, 2, 3, 3, 1, 2, 2, 0, 1};
std::vector<OutputType> results(hidden_states.size(), 0);
for (int i = 0; i < parallelism; i++)
{
if (i == 0)
{
// Only need to init the inputs on the first iteration
runMoEPermute({hidden_states}, {probs}, hidden_size, num_experts, k, {},
MOEParallelismConfig::ExpertParallelism(parallelism, i));
}
else
{
runMoEPermute(MOEParallelismConfig::ExpertParallelism(parallelism, i));
}
auto selected_expert = getDataFromDevice(mSelectedExpert, num_tokens * k);
// Experts should only be selected when we are on the right node
// Note the index is [0,num_experts_per_node), so we offset the experts by the start for this node
int const start_expert = i * (mNumExperts / parallelism);
std::transform(selected_expert.begin(), selected_expert.end(), selected_expert.begin(),
[&](int val) { return val == mNumExperts ? mNumExperts : val + start_expert; });
auto masked_expected_experts = maskSelectedExpertsForTP(expected_experts, parallelism, i);
ASSERT_EQ(selected_expert, masked_expected_experts);
auto proj_map = getDataFromDevice(mSourceToExpandedMap, num_tokens * k);
auto permute_map = calcPermuteMapExpertParallel(masked_expected_experts);
ASSERT_EQ(permute_map, proj_map) << "Iteration " << i;
compareSoftmax(expected_experts, probs);
// Do the final reduce
auto iter_results = getDataFromDevice(mFinalOutput, num_tokens * hidden_size);
std::transform(iter_results.cbegin(), iter_results.cend(), results.cbegin(), results.begin(), std::plus<>{});
}
compareFinal(expected_experts, probs, raw_unquant_input, results);
}
TYPED_TEST(MixtureOfExpertsTest, ExpertParallel)
{
this->ExpertParallelTest();
}
TYPED_TEST(MixtureOfExpertsTest, ExpertParallelK2)
{
this->ExpertParallelTest(2);
}
TYPED_TEST(MixtureOfExpertsTest, ExpertParallelNoBias)
{
this->mUseBias = false;
this->ExpertParallelTest();
this->ExpertParallelTest(2);
}
TYPED_TEST(MixtureOfExpertsTest, ExpertParallelRenorm)
{
this->mNormMode = MOEExpertScaleNormalizationMode::RENORMALIZE;
this->ExpertParallelTest();
this->ExpertParallelTest(2);
}
TYPED_TEST(MixtureOfExpertsTest, ExpertParallelGeglu)
{
this->mActType = tensorrt_llm::ActivationType::Geglu;
this->ExpertParallelTest();
this->ExpertParallelTest(2);
}
template <class TypeParam_>
void MixtureOfExpertsTest<TypeParam_>::TensorParallelTest(int k)
{
if (FP8)
{
// TODO Remove this when bias + FP8 is supported
mUseBias = false;
}
int64_t hidden_size = DEFAULT_HIDDEN_SIZE;
int64_t parallelism = 8;
int64_t num_experts = 4;
int64_t num_tokens = 3;
std::vector<DataType> hidden_states(hidden_size * num_tokens);
auto raw_unquant_input = populateTokens(hidden_states);
std::vector<float> probs = {
0.5, 0.1, 0.25, 0.15, //
0.03, 0.2, 0.07, 0.7, //
0.25, 0.21, 0.35, 0.19, //
};
std::vector<int> expected_experts{0, 3, 2};
if (k == 2)
expected_experts = {0, 2, 3, 1, 2, 0};
else if (k == 3)
expected_experts = {0, 2, 3, 3, 1, 2, 2, 0, 1};
std::vector<OutputType> results(hidden_states.size(), 0);
for (int i = 0; i < parallelism; i++)
{
if (i == 0)
{
// Only need to init the inputs on the first iteration
runMoEPermute({hidden_states}, {probs}, hidden_size, num_experts, k, {},
MOEParallelismConfig::TensorParallelism(parallelism, i));
}
else
{
runMoEPermute(MOEParallelismConfig::TensorParallelism(parallelism, i));
}
auto selected_expert = getDataFromDevice(mSelectedExpert, num_tokens * k);
EXPECT_EQ(selected_expert, expected_experts);
auto proj_map = getDataFromDevice(mSourceToExpandedMap, num_tokens * k);
std::vector<int> permute_map{0, 2, 1};
if (k == 2)
permute_map = {0, 5, 4, 3, 2, 1};
if (k == 3)
permute_map = {0, 8, 6, 4, 2, 1, 7, 5, 3};
ASSERT_EQ(permute_map, proj_map) << "Iteration " << i;
// Do the final reduce
auto iter_results = getDataFromDevice(mFinalOutput, num_tokens * hidden_size);
std::transform(iter_results.cbegin(), iter_results.cend(), results.cbegin(), results.begin(), std::plus<>{});
}
compareFinal(expected_experts, probs, raw_unquant_input, results);
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallel)
{
this->TensorParallelTest();
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallelK2)
{
this->TensorParallelTest(2);
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallelK3)
{
this->TensorParallelTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallelNoBias)
{
this->mUseBias = false;
this->TensorParallelTest();
this->TensorParallelTest(2);
this->TensorParallelTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallelRenorm)
{
this->mNormMode = MOEExpertScaleNormalizationMode::RENORMALIZE;
this->TensorParallelTest();
this->TensorParallelTest(2);
this->TensorParallelTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, TensorParallelGeglu)
{
this->mActType = tensorrt_llm::ActivationType::Geglu;
this->TensorParallelTest();
this->TensorParallelTest(2);
this->TensorParallelTest(3);
}
TYPED_TEST(MixtureOfExpertsTest, ConfigSweep)
{
auto configs = this->mMoERunner.getTactics();
for (auto conf : configs)
{
using namespace tensorrt_llm::cutlass_extensions;
std::stringstream tactic;
tactic << "Failed " << (conf.is_sm90 ? "SM90+" : "<SM90") << " tactic with tile shape ";
if (conf.tile_config_sm90 != CutlassTileConfigSM90::ChooseWithHeuristic)
{
tactic << (int) conf.tile_config_sm90 << " and cluster shape " << (int) conf.cluster_shape
<< " mainloop sched " << (int) conf.mainloop_schedule << " epi sched "
<< (int) conf.epilogue_schedule;
}
else if (conf.tile_config != CutlassTileConfig::ChooseWithHeuristic)
{
tactic << (int) conf.tile_config << " and stages " << (int) conf.stages << " split k "
<< (int) conf.split_k_factor;
}
else
{
FAIL() << "Uninitialised tactic encountered";
}
EXPECT_NO_THROW({
this->mSelectedConfig = conf;
this->BasicPermuteTest();
if (::testing::Test::HasFailure())
throw std::runtime_error("Test Failed");
}) << tactic.str();
}
}
TYPED_TEST(LargeMixtureOfExpertsTest, PermuteVeryLargeExperts)
{
// Chosen so that hidden_size * inter_size * num_experts >> 2^32, but we can still fit in 80GB for `half`
// Uses a non-power of two so any integer overflow will have bad alignment
int64_t hidden_size = 31 * 1024;
ASSERT_GT(hidden_size * hidden_size * 4, (int64_t) std::numeric_limits<int>::max() + 1ull);
int64_t k = 2; // Use k=2 so all experts get a value
// 3 tokens 4 experts are the defaults for BasicPermuteTest
if (!this->checkSufficientTestMemory(3, hidden_size, 4, k))
{
GTEST_SKIP() << "Insufficient free memory for test";
}
this->BasicPermuteTest(k, hidden_size); // 4 x 32k x 128K experts
}
TYPED_TEST(LargeMixtureOfExpertsTest, PermuteVeryLongSequence)
{
this->mUseBias = !this->FP8;
using DataType = typename TypeParam::DataType;
// Sequence * hidden size > INT32_MAX
int64_t hidden_size = 2048ll;
int64_t num_experts = 4;
int64_t k = 1;
int64_t num_tokens = 1024ll * 1024ll + 1ll;
ASSERT_GT(hidden_size * num_tokens, (uint64_t) std::numeric_limits<int>::max() + 1ull);
if (!this->checkSufficientTestMemory(num_tokens, hidden_size, num_experts, k))
{
GTEST_SKIP() << "Insufficient free memory for test";
}
std::vector<DataType> hidden_states(hidden_size * num_tokens);
this->mMaxInput = 1.f; // Any arbitrary non-zero value
// All tokens to expert 0
float const token_probs[] = {1.f, 0.5f, 0.f, 0.f};
std::vector<float> probs;
probs.reserve(num_tokens * num_experts);
for (size_t i = 0; i < num_tokens; i++)
{
probs.insert(probs.cend(), std::begin(token_probs), std::end(token_probs));
}
this->runMoEPermute({hidden_states}, {probs}, hidden_size, num_experts, k);
// Just look at the first few tokens
this->mTotalTokens = 10;
probs.resize(num_experts * this->mTotalTokens);
hidden_states.resize(hidden_size * this->mTotalTokens);
auto selected_expert = this->getDataFromDevice(this->mSelectedExpert, k * this->mTotalTokens);
// All tokens should go to expert 0
for (auto& item : selected_expert)
{
ASSERT_EQ(item, 0);
}
this->compareSoftmax(selected_expert, probs);
// Create a default vector for the reference outputs of the correct type for FP8
std::vector<typename TypeParam::OutputType> unquant_states(this->mTotalTokens * hidden_size);
this->compareFinal(selected_expert, probs, unquant_states);
}