mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* TensorRT-LLM Release 0.10.0 --------- Co-authored-by: Loki <lokravi@amazon.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
761 lines
31 KiB
Python
761 lines
31 KiB
Python
import argparse
|
|
import copy
|
|
import functools
|
|
import json
|
|
import os
|
|
import time
|
|
import traceback
|
|
from collections import defaultdict
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from typing import Dict, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import safetensors
|
|
import torch
|
|
import torch.nn as nn
|
|
from tqdm import tqdm
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from transformers.pytorch_utils import Conv1D
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm._utils import release_gc
|
|
from tensorrt_llm.layers import MoeConfig
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models.convert_utils import load_calib_dataset
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument('--logits_dtype',
|
|
type=str,
|
|
default='float32',
|
|
choices=['float16', 'float32'])
|
|
parser.add_argument(
|
|
'--per_channel',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, we use a single static scaling factor for the GEMM\'s result. '
|
|
'per_channel instead uses a different static scaling factor for each channel. '
|
|
'The latter is usually more accurate, but a little slower.')
|
|
parser.add_argument(
|
|
'--calib_dataset',
|
|
type=str,
|
|
default='ccdv/cnn_dailymail',
|
|
help=
|
|
"The huggingface dataset name or the local directory of the dataset for calibration."
|
|
)
|
|
parser.add_argument("--dataset_cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="cache dir to load the hugging face dataset")
|
|
parser.add_argument(
|
|
'--int8_kv_cache',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
|
|
)
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
parser.add_argument('--rotary_base', type=float, default=10000.0)
|
|
parser.add_argument('--rotary_scaling', nargs=2, type=str, default=None)
|
|
parser.add_argument('--vocab_size', type=int, default=32000)
|
|
parser.add_argument('--n_positions', type=int, default=2048)
|
|
parser.add_argument('--n_layer', type=int, default=32)
|
|
parser.add_argument('--n_head', type=int, default=32)
|
|
parser.add_argument('--n_kv_head', type=int, default=None)
|
|
parser.add_argument('--n_embd', type=int, default=4096)
|
|
parser.add_argument('--inter_size', type=int, default=11008)
|
|
parser.add_argument('--max_seq_len', type=int, default=4096)
|
|
parser.add_argument('--clip_qkv', type=int, default=None)
|
|
parser.add_argument('--hidden_act',
|
|
type=str,
|
|
default='gelu',
|
|
help='Set to swiglu to use GLU in MoEs')
|
|
parser.add_argument(
|
|
'--moe_num_experts',
|
|
default=0,
|
|
type=int,
|
|
help='Specify the number of experts to use for MOE layers')
|
|
parser.add_argument(
|
|
'--moe_top_k',
|
|
default=0,
|
|
type=int,
|
|
help=
|
|
'Specify the top_k value to use for MOE layers. Default to 1 if --moe_num_experts is set'
|
|
)
|
|
parser.add_argument(
|
|
'--moe_tp_mode',
|
|
default=MoeConfig.ParallelismMode.TENSOR_PARALLEL,
|
|
type=int,
|
|
help=
|
|
'Controls how to distribute experts in TP. Check layers/moe.py for accepted values',
|
|
)
|
|
parser.add_argument(
|
|
'--moe_renorm_mode',
|
|
default=MoeConfig.ExpertScaleNormalizationMode.RENORMALIZE,
|
|
type=int,
|
|
help=
|
|
'Controls renormalization after gate logits. Check layers/moe.py for accepted values',
|
|
)
|
|
parser.add_argument(
|
|
'--disable_weight_only_quant_plugin',
|
|
default=False,
|
|
action="store_true",
|
|
help=
|
|
'By default, using plugin implementation for weight quantization. Enabling disable_weight_only_quant_plugin flag will use ootb implementation instead of plugin.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument(
|
|
'--dense_context_fmha',
|
|
default=False,
|
|
action='store_true',
|
|
help=
|
|
'Enable dense fmha in context phase, otherwise sliding window attention.'
|
|
'If dense_context_fmha=False, the sliding window size is the max attention window size.'
|
|
)
|
|
parser.add_argument(
|
|
'--use_parallel_embedding',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
|
|
)
|
|
parser.add_argument(
|
|
'--embedding_sharding_dim',
|
|
type=int,
|
|
default=0,
|
|
choices=[0, 1],
|
|
help=
|
|
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
|
|
'To shard it along hidden dimension, set embedding_sharding_dim=1'
|
|
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
|
|
)
|
|
parser.add_argument(
|
|
'--use_embedding_sharing',
|
|
action="store_true",
|
|
default=False,
|
|
help=
|
|
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
|
|
'Note: the flag might not take effect when the criteria are not met.')
|
|
parser.add_argument('--use_prompt_tuning',
|
|
action="store_true",
|
|
default=False)
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def args_to_build_options(args):
|
|
return {
|
|
'use_parallel_embedding': args.use_parallel_embedding,
|
|
'embedding_sharding_dim': args.embedding_sharding_dim,
|
|
'share_embedding_table': args.use_embedding_sharing,
|
|
'disable_weight_only_quant_plugin':
|
|
args.disable_weight_only_quant_plugin
|
|
}
|
|
|
|
|
|
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
|
|
"""
|
|
This function has two purposes:
|
|
- compute quantized weights, scaled either per-tensor or per-column
|
|
- compute scaling factors
|
|
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
|
|
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
|
|
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
|
|
Here is the list of what we need (T means per-tensor, C per-column):
|
|
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
|
|
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
|
|
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
|
|
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
|
|
to quant range (int8) (used for CUBLAS) (T, C)
|
|
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
|
|
but then the model would change depending on the number of GPUs used.
|
|
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
|
|
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
|
|
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
|
|
"""
|
|
|
|
# compute weight scaling factors for fp->int8 and int8->fp
|
|
if is_qkv and not multi_query_mode:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
|
|
dim=-1, keepdims=True)[0].cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
|
|
-1).cpu().numpy()
|
|
elif is_qkv and multi_query_mode:
|
|
hidden_dim = weights.shape[0]
|
|
local_dim = act_range["w"].shape[0]
|
|
kv_dim = (local_dim - hidden_dim) // 2
|
|
scale_w_q = act_range["w"][0:hidden_dim]
|
|
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
|
|
scale_w_v = act_range["w"][-kv_dim:]
|
|
|
|
scale_w_qkv_t = torch.concat([
|
|
scale_w_q.max(dim=0, keepdim=True)[0],
|
|
scale_w_k.max(dim=0, keepdim=True)[0],
|
|
scale_w_v.max(dim=0, keepdim=True)[0]
|
|
])
|
|
|
|
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
else:
|
|
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
|
|
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
|
|
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
|
|
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
|
|
|
|
scale_w_orig_quant_c = scale_w_orig_quant_c.astype(np.float32)
|
|
scale_w_orig_quant_t = scale_w_orig_quant_t.astype(np.float32)
|
|
# compute the rest of needed scaling factors
|
|
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
|
|
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
|
|
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
|
|
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_t)
|
|
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
|
|
scale_w_orig_quant_c)
|
|
if is_qkv and not multi_query_mode:
|
|
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
|
|
scale_w_orig_quant_c.shape)
|
|
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
|
|
scale_w_orig_quant_c.shape)
|
|
if is_qkv and multi_query_mode:
|
|
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
|
|
scale_w_q.shape)
|
|
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
|
|
scale_w_k.shape)
|
|
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
|
|
scale_w_v.shape)
|
|
scale_y_accum_quant_t = np.concatenate(
|
|
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
|
|
scale_w_quant_orig_t = np.concatenate([
|
|
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
|
|
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
|
|
])
|
|
|
|
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
|
|
if weights.dtype == torch.bfloat16:
|
|
weights = weights.to(torch.float32).numpy()
|
|
else:
|
|
weights = weights.numpy()
|
|
|
|
if is_qkv and multi_query_mode:
|
|
weight_int8 = to_i8(weights / scale_w_quant_orig_t)
|
|
else:
|
|
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
|
|
|
|
return {
|
|
"weight.int8": weight_int8,
|
|
"weight.int8.col": to_i8(weights * scale_w_orig_quant_c),
|
|
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
|
|
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
|
|
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
|
|
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
|
|
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
|
|
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
|
|
}
|
|
|
|
|
|
@torch.no_grad()
|
|
def capture_activation_range(model,
|
|
tokenizer,
|
|
dataset,
|
|
num_samples=1,
|
|
seq_len=512):
|
|
model.eval()
|
|
device = next(model.parameters()).device
|
|
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
def stat_tensor(name, tensor, act_scales, key):
|
|
hidden_dim = tensor.shape[-1]
|
|
tensor = tensor.view(-1, hidden_dim).abs().detach()
|
|
comming_max = torch.max(tensor, dim=0)[0].float()
|
|
|
|
if act_scales[name][key] is None:
|
|
act_scales[name][key] = comming_max
|
|
else:
|
|
act_scales[name][key] = torch.max(act_scales[name][key],
|
|
comming_max)
|
|
|
|
def stat_input_hook(m, x, y, name):
|
|
if isinstance(x, tuple):
|
|
x = x[0]
|
|
stat_tensor(name, x, act_scales, "x")
|
|
stat_tensor(name, y, act_scales, "y")
|
|
|
|
if act_scales[name]["w"] is None:
|
|
act_scales[name]["w"] = m.weight.abs().clip(
|
|
1e-8, None).max(dim=1)[0].float()
|
|
|
|
hooks = []
|
|
for name, m in model.named_modules():
|
|
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
|
|
hooks.append(
|
|
m.register_forward_hook(
|
|
functools.partial(stat_input_hook, name=name)))
|
|
|
|
for i in tqdm(range(num_samples), desc="calibrating model"):
|
|
datapoint = dataset[i:i + 1]
|
|
line = copy.copy(datapoint)
|
|
line[0] = line[0] + ' TL;DR: '
|
|
line[0] = line[0].strip()
|
|
line[0] = line[0].replace(" n't", "n't")
|
|
input_ids = tokenizer(line,
|
|
return_tensors="pt",
|
|
max_length=seq_len,
|
|
padding=True,
|
|
truncation=True).input_ids.to(device)
|
|
model(input_ids)
|
|
|
|
for h in hooks:
|
|
h.remove()
|
|
|
|
return act_scales
|
|
|
|
|
|
def split(weight: torch.Tensor,
|
|
tp_size: int,
|
|
rank: int = 0,
|
|
dim: int = 0) -> torch.Tensor:
|
|
if tp_size == 1:
|
|
return weight
|
|
elif weight.ndim == 1:
|
|
return torch.chunk(weight, tp_size)[rank].contiguous()
|
|
else:
|
|
return torch.chunk(weight, tp_size, dim=dim)[rank].contiguous()
|
|
|
|
|
|
def split_qkv_tp(qkv, n_head, n_kv_heads, n_hidden, tensor_parallel, rank):
|
|
"""
|
|
Splits the QKV matrix according to tensor parallelism
|
|
"""
|
|
kv_head_size = n_kv_heads * (n_hidden // n_head)
|
|
q, k, v = torch.split(qkv, [n_hidden, kv_head_size, kv_head_size], dim=0)
|
|
q = split(q, tensor_parallel, rank, dim=0)
|
|
k = split(k, tensor_parallel, rank, dim=0)
|
|
v = split(v, tensor_parallel, rank, dim=0)
|
|
return torch.concatenate([q, k, v], dim=0).contiguous()
|
|
|
|
|
|
def split_matrix(weight: torch.Tensor, tp_size: int, rank: int,
|
|
dim: int) -> torch.Tensor:
|
|
return split(weight, tp_size, rank, dim=dim)
|
|
|
|
|
|
def get_weight(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> torch.Tensor:
|
|
if f'{prefix}' in params:
|
|
return params[f'{prefix}'].to(dtype).detach().cpu()
|
|
elif f'{prefix}.weight' not in params:
|
|
return None
|
|
return params[f'{prefix}.weight'].to(dtype).detach().cpu()
|
|
|
|
|
|
def get_bias(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> torch.Tensor:
|
|
if f'{prefix}.bias' not in params:
|
|
return None
|
|
return params[f'{prefix}.bias'].to(dtype).detach().cpu()
|
|
|
|
|
|
def get_weight_and_bias(params: Dict[str, torch.Tensor], prefix: str,
|
|
dtype: torch.dtype) -> Tuple[torch.Tensor]:
|
|
return get_weight(params, prefix, dtype), get_bias(params, prefix, dtype)
|
|
|
|
|
|
def get_tllm_linear_weight(
|
|
weight: torch.Tensor,
|
|
prefix: str,
|
|
bias: Optional[torch.Tensor] = None,
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8,
|
|
postfix='weight',
|
|
quant_scale_name=None) -> Dict[str, torch.Tensor]:
|
|
results = {}
|
|
if use_weight_only:
|
|
if weight.dim() > 2:
|
|
v = weight.transpose(1, 2).contiguous().clone()
|
|
else:
|
|
v = weight.t().contiguous().clone()
|
|
processed_torch_weights, torch_weight_scales = \
|
|
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
|
|
v.cpu(), plugin_weight_only_quant_type)
|
|
results[prefix + postfix] = processed_torch_weights
|
|
if quant_scale_name is not None:
|
|
results[quant_scale_name] = torch_weight_scales
|
|
else:
|
|
results[prefix + 'per_channel_scale'] = torch_weight_scales
|
|
else:
|
|
results[prefix + postfix] = weight.contiguous()
|
|
|
|
if bias is not None:
|
|
results[f'{prefix}bias'] = bias
|
|
|
|
return results
|
|
|
|
|
|
def convert_hf_dbrx(model_params: dict,
|
|
hf_config: AutoConfig,
|
|
mapping: Mapping,
|
|
dtype: str = 'float32',
|
|
use_weight_only: bool = False,
|
|
plugin_weight_only_quant_type: torch.dtype = torch.int8,
|
|
moe_config: MoeConfig = None,
|
|
int8_kv_cache=False,
|
|
act_range=[]):
|
|
|
|
weights = {}
|
|
tik = time.time()
|
|
|
|
dtype = getattr(torch, dtype)
|
|
num_hidden_layers = hf_config.n_layers
|
|
num_head = hf_config.n_heads
|
|
num_kv_heads = hf_config.attn_config.kv_n_heads
|
|
num_hidden = hf_config.d_model
|
|
mlp_hidden_size = hf_config.ffn_config.ffn_hidden_size
|
|
layers_range = mapping.pp_layers(num_hidden_layers)
|
|
multi_query_mode = (num_kv_heads != num_head)
|
|
|
|
for l in layers_range:
|
|
prefix = f'transformer.blocks.{l}'
|
|
tllm_prex = f'transformer.layers.{l-layers_range[0]}'
|
|
# Attention QKV (no bias)
|
|
qkv_w = get_weight(model_params, f'{prefix}.norm_attn_norm.attn.Wqkv',
|
|
dtype)
|
|
qkv_w = split_qkv_tp(qkv_w, num_head, num_kv_heads, num_hidden,
|
|
mapping.tp_size, mapping.tp_rank)
|
|
weights.update(
|
|
get_tllm_linear_weight(qkv_w, f'{tllm_prex}.attention.qkv.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
# Attention dense (no bias)
|
|
attn_dense_weight = get_weight(
|
|
model_params, f'{prefix}.norm_attn_norm.attn.out_proj', dtype)
|
|
attn_dense_w = split_matrix(attn_dense_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
weights.update(
|
|
get_tllm_linear_weight(attn_dense_w,
|
|
f'{tllm_prex}.attention.dense.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
if int8_kv_cache:
|
|
qkv_weight = get_weight(model_params,
|
|
f'{prefix}.norm_attn_norm.attn.Wqkv', dtype)
|
|
qkv_weight = qkv_weight.t()
|
|
if not multi_query_mode:
|
|
qkv_weight = qkv_weight.reshape(num_hidden, 3, num_hidden)
|
|
int8_weights = generate_int8(
|
|
qkv_weight,
|
|
act_range.get(f'{prefix}.norm_attn_norm.attn.Wqkv'),
|
|
is_qkv=True,
|
|
multi_query_mode=multi_query_mode)
|
|
weights[
|
|
f'{tllm_prex}.attention.kv_cache_scaling_factor'] = torch.from_numpy(
|
|
np.array([int8_weights['scale_y_quant_orig']],
|
|
dtype=np.float32)).contiguous()
|
|
|
|
# input layer_norm
|
|
input_ln_weight = get_weight(model_params,
|
|
f'{prefix}.norm_attn_norm.norm_1', dtype)
|
|
weights[f'{tllm_prex}.input_layernorm.weight'] = input_ln_weight
|
|
|
|
# post layer_norm
|
|
post_ln_weight = get_weight(model_params,
|
|
f'{prefix}.norm_attn_norm.norm_2', dtype)
|
|
weights[f'{tllm_prex}.post_layernorm.weight'] = post_ln_weight
|
|
|
|
if moe_config and moe_config.has_moe():
|
|
# experts mlp w1 -> mlp gate
|
|
mlp_gate_weight = get_weight(model_params,
|
|
f'{prefix}.ffn.experts.mlp.w1', dtype)
|
|
mlp_gate_weight = mlp_gate_weight.reshape(-1, mlp_hidden_size,
|
|
num_hidden)
|
|
if moe_config.tp_mode == MoeConfig.ParallelismMode.TENSOR_PARALLEL:
|
|
mlp_gate_w = split_matrix(mlp_gate_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
else:
|
|
mlp_gate_w = split_matrix(mlp_gate_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
# experts mlp v1 -> mlp fc
|
|
mlp_fc_weight = get_weight(model_params,
|
|
f'{prefix}.ffn.experts.mlp.v1', dtype)
|
|
mlp_fc_weight = mlp_fc_weight.reshape(-1, mlp_hidden_size,
|
|
num_hidden)
|
|
if moe_config.tp_mode == MoeConfig.ParallelismMode.TENSOR_PARALLEL:
|
|
mlp_fc_w = split_matrix(mlp_fc_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=1)
|
|
else:
|
|
mlp_fc_w = split_matrix(mlp_fc_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
mlp_fc_w = torch.concat([mlp_fc_w, mlp_gate_w], dim=-2)
|
|
weights.update(
|
|
get_tllm_linear_weight(mlp_fc_w, f'{tllm_prex}.mlp.fc.', None,
|
|
use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
# experts mlp w2 -> mlp proj
|
|
mlp_proj_weight = get_weight(model_params,
|
|
f'{prefix}.ffn.experts.mlp.w2', dtype)
|
|
mlp_proj_weight = mlp_proj_weight.reshape(-1, mlp_hidden_size,
|
|
num_hidden).transpose(
|
|
1, 2)
|
|
if moe_config.tp_mode == MoeConfig.ParallelismMode.TENSOR_PARALLEL:
|
|
mlp_proj_w = split_matrix(mlp_proj_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=2)
|
|
else:
|
|
mlp_proj_w = split_matrix(mlp_proj_weight,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
weights.update(
|
|
get_tllm_linear_weight(mlp_proj_w, f'{tllm_prex}.mlp.proj.',
|
|
None, use_weight_only,
|
|
plugin_weight_only_quant_type))
|
|
|
|
# router mlp
|
|
router_weights = get_weight(model_params,
|
|
f'{prefix}.ffn.router.layer',
|
|
torch.float32)
|
|
weights[f'{tllm_prex}.mlp.router.weight'] = router_weights
|
|
|
|
embed_w = get_weight(model_params, 'transformer.wte', dtype)
|
|
lm_head = get_weight(model_params, 'lm_head', dtype)
|
|
if mapping.is_first_pp_rank():
|
|
# Embedding
|
|
weights['transformer.vocab_embedding.weight'] = embed_w
|
|
if mapping.is_last_pp_rank():
|
|
if lm_head is None:
|
|
lm_head = embed_w.clone()
|
|
ln_f_w = get_weight(model_params, 'transformer.norm_f', dtype)
|
|
# ln_f weight and bias
|
|
weights['transformer.ln_f.weight'] = ln_f_w
|
|
weights['lm_head.weight'] = split_matrix(lm_head,
|
|
mapping.tp_size,
|
|
mapping.tp_rank,
|
|
dim=0)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Weights loaded. Total time: {t}')
|
|
return weights
|
|
|
|
|
|
def execute(workers, func, hf_model):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(hf_model, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [
|
|
p.submit(f, hf_model, rank) for rank, f in enumerate(func)
|
|
]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
world_size = args.tp_size * args.pp_size
|
|
|
|
tik = time.time()
|
|
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
quant_algo = None
|
|
kv_cache_quant_algo = None
|
|
plugin_weight_only_quant_type = None
|
|
if args.use_weight_only:
|
|
if args.weight_only_precision == 'int8':
|
|
plugin_weight_only_quant_type = torch.int8
|
|
quant_algo = QuantAlgo.W8A16
|
|
elif args.weight_only_precision == 'int4':
|
|
plugin_weight_only_quant_type = torch.quint4x2
|
|
quant_algo = QuantAlgo.W4A16
|
|
|
|
if args.int8_kv_cache:
|
|
kv_cache_quant_algo = QuantAlgo.INT8
|
|
|
|
hf_config = None
|
|
if args.model_dir is not None:
|
|
hf_config = AutoConfig.from_pretrained(args.model_dir,
|
|
trust_remote_code=True)
|
|
args.n_kv_head = hf_config.attn_config.kv_n_heads
|
|
args.n_layer = hf_config.n_layers
|
|
args.n_head = hf_config.n_heads
|
|
args.vocab_size = hf_config.vocab_size
|
|
args.n_embd = hf_config.d_model
|
|
args.inter_size = hf_config.ffn_config.ffn_hidden_size
|
|
args.max_seq_len = hf_config.max_seq_len
|
|
args.moe_num_experts = getattr(hf_config.ffn_config, "moe_num_experts",
|
|
0)
|
|
args.moe_top_k = getattr(hf_config.ffn_config, "moe_top_k", 0)
|
|
if args.moe_num_experts and args.moe_top_k == 0:
|
|
args.moe_top_k = 1
|
|
args.clip_qkv = hf_config.attn_config.clip_qkv
|
|
args.hidden_act = 'swiglu'
|
|
args.rotary_base = hf_config.attn_config.rope_theta
|
|
args.moe_config = MoeConfig(args.moe_num_experts, args.moe_top_k,
|
|
args.moe_tp_mode,
|
|
args.moe_renorm_mode).validate()
|
|
config = {
|
|
'architecture': 'DbrxForCausalLM',
|
|
'dtype': args.dtype,
|
|
'logits_dtype': args.logits_dtype,
|
|
'vocab_size': args.vocab_size,
|
|
'hidden_size': args.n_embd,
|
|
'intermediate_size': args.inter_size,
|
|
'num_hidden_layers': args.n_layer,
|
|
'num_attention_heads': args.n_head,
|
|
'num_key_value_heads': args.n_kv_head,
|
|
'max_position_embeddings': args.max_seq_len,
|
|
'norm_epsilon': 1e-5,
|
|
'position_embedding_type': 'rope_gpt_neox',
|
|
'hidden_act': args.hidden_act,
|
|
'rotary_base': args.rotary_base,
|
|
'rotary_scaling': args.rotary_scaling,
|
|
'quantization': {
|
|
'quant_algo': quant_algo,
|
|
'kv_cache_quant_algo': kv_cache_quant_algo,
|
|
'exclude_modules': ['lm_head'],
|
|
},
|
|
'moe_config': {
|
|
"num_experts": args.moe_num_experts,
|
|
"top_k": args.moe_top_k,
|
|
"tp_mode": args.moe_tp_mode,
|
|
"normalization_mode": args.moe_renorm_mode
|
|
},
|
|
'mapping': {
|
|
'world_size': world_size,
|
|
'tp_size': args.tp_size,
|
|
'pp_size': args.pp_size,
|
|
},
|
|
'clip_qkv': args.clip_qkv,
|
|
'moe_num_experts': args.moe_num_experts,
|
|
'moe_top_k': args.moe_top_k,
|
|
'moe_tp_mode': args.moe_tp_mode,
|
|
'moe_normalization_mode': args.moe_renorm_mode,
|
|
'dense_context_fmha': args.dense_context_fmha,
|
|
}
|
|
|
|
if args.use_weight_only and args.moe_config.has_moe():
|
|
config['quantization']['exclude_modules'].append('router')
|
|
|
|
config.update(args_to_build_options(args))
|
|
|
|
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
|
|
json.dump(config, f, indent=4)
|
|
|
|
def load_from_hf(model_dir):
|
|
hf_model = AutoModelForCausalLM.from_pretrained(model_dir,
|
|
trust_remote_code=True,
|
|
device_map="auto",
|
|
torch_dtype=getattr(
|
|
torch, args.dtype),
|
|
config=hf_config)
|
|
return hf_model
|
|
|
|
def convert_and_save(hf_model, rank):
|
|
mapping = Mapping(world_size=world_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
act_range = {}
|
|
if args.int8_kv_cache:
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_dir,
|
|
padding_side='left',
|
|
trust_remote_code=True)
|
|
dataset = load_calib_dataset(args.calib_dataset,
|
|
cache_dir=args.dataset_cache_dir)
|
|
act_range = capture_activation_range(hf_model, tokenizer, dataset)
|
|
|
|
hf_model = dict(hf_model.named_parameters())
|
|
weights = convert_hf_dbrx(
|
|
hf_model,
|
|
hf_config,
|
|
mapping,
|
|
dtype=args.dtype,
|
|
use_weight_only=args.use_weight_only,
|
|
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
|
|
moe_config=args.moe_config,
|
|
int8_kv_cache=args.int8_kv_cache,
|
|
act_range=act_range)
|
|
|
|
safetensors.torch.save_file(
|
|
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
|
|
del weights
|
|
release_gc()
|
|
|
|
if args.model_dir:
|
|
hf_model = load_from_hf(args.model_dir)
|
|
execute(args.workers, [convert_and_save] * world_size, hf_model)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|