TensorRT-LLMs/examples/high-level-api/llm_examples.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

254 lines
8.7 KiB
Python

#!/usr/bin/env python3
import asyncio
import os
from typing import List, Optional, Union
import click
import torch
from tensorrt_llm import LLM, ModelConfig
from tensorrt_llm.hlapi.llm import KvCacheConfig, SamplingConfig
from tensorrt_llm.hlapi.utils import get_device_count
from tensorrt_llm.quantization import QuantAlgo
# NOTE, Currently, the following examples are only available for LLaMA models.
@click.group()
def cli():
pass
@click.command('run_llm_generate')
@click.option('--prompt', type=str, default="What is LLM?")
@click.option('--model_dir', type=str, help='The directory of the model.')
@click.option('--engine_dir',
type=str,
help='The directory of the engine.',
default=None)
@click.option('--tp_size',
type=int,
default=1,
help='The number of GPUs for Tensor Parallel.')
@click.option('--pp_size',
type=int,
default=1,
help='The number of GPUs for Pipeline Parallel.')
@click.option('--prompt_is_digit',
type=bool,
default=False,
help='Whether the prompt is a list of integers.')
def run_llm_generate(
prompt: str,
model_dir: str,
engine_dir: Optional[str] = None,
tp_size: int = 1,
pp_size: int = 1,
prompt_is_digit: bool = False,
end_id: int = 2,
):
''' Running LLM with arbitrary model formats including:
- HF model
- TRT-LLM checkpoint
- TRT-LLM engine
It will dump the engine to `engine_dir` if specified.
Args:
prompts: A list of prompts. Each prompt can be either a string or a list of integers when tokenizer is disabled.
model_dir: The directory of the model.
engine_dir: The directory of the engine, if specified different than model_dir then it will save the engine to `engine_dir`.
tp_size: The number of GPUs for Tensor Parallel.
pp_size: The number of GPUs for Pipeline Parallel.
'''
config = ModelConfig(model_dir)
# Avoid the tp_size and pp_size setting override the ones loaded from built engine
if tp_size > 1: config.parallel_config.tp_size = tp_size
if pp_size > 1: config.parallel_config.pp_size = pp_size
if get_device_count() < config.parallel_config.world_size:
print(
"Skip the example for TP!!! Since the number of GPUs is less than required"
)
return
if config.parallel_config.world_size > 1:
print(f'Running LLM with Tensor Parallel on {tp_size} GPUs.')
llm = LLM(config)
if engine_dir and os.path.abspath(model_dir) != os.path.abspath(engine_dir):
print(f"Saving engine to {engine_dir}...")
llm.save(engine_dir)
prompts = parse_prompts(prompt, prompt_is_digit)
sampling_config = SamplingConfig(end_id=end_id,
pad_id=end_id) if prompt_is_digit else None
for output in llm.generate(prompts, sampling_config=sampling_config):
print("OUTPUT:", output)
@click.command('run_llm_generate_async_example')
@click.option('--prompt', type=str, default="What is LLM?")
@click.option('--model_dir', type=str, help='The directory of the model.')
@click.option('--streaming',
is_flag=True,
help='Whether to enable streaming generation.')
@click.option('--tp_size',
type=int,
default=1,
help='The number of GPUs for Tensor Parallel.')
@click.option('--pp_size',
type=int,
default=1,
help='The number of GPUs for Pipeline Parallel.')
def run_llm_generate_async_example(prompt: str,
model_dir: str,
streaming: bool = False,
tp_size: int = 1,
pp_size: int = 1):
''' Running LLM generation asynchronously. '''
if get_device_count() < tp_size:
print(
"Skip the example for TP!!! Since the number of GPUs is less than required"
)
return
if tp_size > 1:
print(f'Running LLM with Tensor Parallel on {tp_size} GPUs.')
config = ModelConfig(model_dir)
# Avoid the tp_size and pp_size setting override the ones loaded from built engine
if tp_size > 1: config.parallel_config.tp_size = tp_size
if pp_size > 1: config.parallel_config.pp_size = pp_size
llm = LLM(config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4))
prompts = parse_prompts(prompt, False)
async def task(prompt: str):
outputs = []
async for output in llm.generate_async(prompt, streaming=streaming):
outputs.append(output.text)
print(' '.join(outputs))
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
@click.command('run_llm_with_quantization')
@click.option('--prompt', type=str, default="What is LLM?")
@click.option('--model_dir', type=str, help='The directory of the model.')
@click.option('--quant_type',
type=str,
default='int4_awq',
help='The quantization type.')
def run_llm_with_quantization(prompt: str, model_dir: str, quant_type: str):
''' Running LLM with quantization.
quant_type could be 'int4_awq' or 'fp8'.
'''
major, minor = torch.cuda.get_device_capability()
if not (major >= 8):
print("Quantization currently only supported on post Ampere")
return
if 'fp8' in quant_type:
if not (major > 8):
print("Hopper GPUs are required for fp8 quantization")
return
config = ModelConfig(model_dir)
if quant_type == 'int4_awq':
config.quant_config.quant_algo = QuantAlgo.W4A16_AWQ
else:
config.quant_config.quant_algo = QuantAlgo.FP8
config.quant_config.kv_cache_quant_algo = QuantAlgo.FP8
config.quant_config.exclude_modules = ["lm_head"]
llm = LLM(config)
prompts = parse_prompts(prompt, False)
for output in llm.generate(prompts):
print(output)
@click.command('run_llm_with_async_future')
@click.option('--prompt', type=str, default="What is LLM?")
@click.option('--model_dir', type=str, help='The directory of the model.')
def run_llm_with_async_future(prompt: str, model_dir: str):
config = ModelConfig(model_dir)
llm = LLM(config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4))
prompts = parse_prompts(prompt)
# The result of generate() is similar to a Future, it won't block the main thread, call .result() to explicitly wait for the result
for generation in llm.generate_async(prompts):
# .result() is a blocking call, call it when you want to wait for the result
output = generation.result()
print(output.text)
# Similar to .result(), there is an async version of .result(), which is .aresult(), and it works with the generate_async().
async def task(prompt: str):
generation = llm.generate_async(prompt, streaming=False)
output = await generation.aresult()
print(output.text)
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
@click.command('run_llm_with_auto_parallel')
@click.option('--prompt', type=str, default="What is LLM?")
@click.option('--model_dir', type=str, help='The directory of the model.')
@click.option('--world_size',
type=int,
default=1,
help='The number of GPUs for Auto Parallel.')
def run_llm_with_auto_parallel(prompt: str,
model_dir: str,
world_size: int = 1):
''' Running LLM with auto parallel enabled. '''
if get_device_count() < world_size:
print(
"Skip the example for auto parallel!!! Since the number of GPUs is less than required"
)
return
if world_size > 1:
print(f'Running LLM with Auto Parallel on {world_size} GPUs.')
config = ModelConfig(model_dir)
config.parallel_config.auto_parallel = True
config.parallel_config.world_size = world_size
llm = LLM(config)
prompts = parse_prompts(prompt)
for output in llm.generate(prompts):
print(output)
def parse_prompts(prompt: str, is_digit: bool = False) -> Union[str, List[int]]:
''' Process a single prompt. '''
if is_digit:
return [[int(i) for i in prompt.split()]]
else:
return [prompt]
if __name__ == '__main__':
cli.add_command(run_llm_generate)
cli.add_command(run_llm_generate_async_example)
cli.add_command(run_llm_with_quantization)
cli.add_command(run_llm_with_async_future)
cli.add_command(run_llm_with_auto_parallel)
cli()