mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* TensorRT-LLM Release 0.10.0 --------- Co-authored-by: Loki <lokravi@amazon.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
61 lines
2.1 KiB
Python
61 lines
2.1 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
import time
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.models import Phi3ForCausalLM, PhiForCausalLM
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--model_type',
|
|
type=str,
|
|
default='phi-2',
|
|
choices=['phi-2', 'Phi-3-mini-4k-instruct', 'Phi-3-mini-128k-instruct'],
|
|
help='Model to be converted.')
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
|
|
tik = time.time()
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
modelForCausalLM = PhiForCausalLM if args.model_type == "phi-2" else Phi3ForCausalLM
|
|
modelForCausalLM.convert_hf_checkpoint(args.model_dir,
|
|
dtype=args.dtype,
|
|
output_dir=args.output_dir)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|