TensorRT-LLMs/examples/phi/convert_checkpoint.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

61 lines
2.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import tensorrt_llm
from tensorrt_llm.models import Phi3ForCausalLM, PhiForCausalLM
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--model_type',
type=str,
default='phi-2',
choices=['phi-2', 'Phi-3-mini-4k-instruct', 'Phi-3-mini-128k-instruct'],
help='Model to be converted.')
args = parser.parse_args()
return args
if __name__ == '__main__':
print(tensorrt_llm.__version__)
args = parse_arguments()
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
modelForCausalLM = PhiForCausalLM if args.model_type == "phi-2" else Phi3ForCausalLM
modelForCausalLM.convert_hf_checkpoint(args.model_dir,
dtype=args.dtype,
output_dir=args.output_dir)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')