TensorRT-LLMs/examples/quantization/quantize.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

126 lines
4.9 KiB
Python

import argparse
import torch.multiprocessing as mp
from tensorrt_llm.quantization import (quantize_and_export,
quantize_nemo_and_export)
mp.set_start_method("spawn", force=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--model_dir",
help="Specify where the HuggingFace model is",
default=None)
parser.add_argument('--nemo_ckpt_path',
help="Specify where the NeMo checkpoint is",
default=None)
parser.add_argument(
'--decoder_type',
type=str,
default='gptnext',
choices=['gptnext', 'llama'],
help="Decoder type; effective for NeMo checkpoint only.")
parser.add_argument(
'--calib_dataset',
type=str,
default='cnn_dailymail',
help=
"The huggingface dataset name or the local directory of the dataset for calibration."
)
parser.add_argument(
'--calib_tp_size',
type=int,
default=1,
help=
"Tensor parallel size for calibration; effective for NeMo checkpoint only."
)
parser.add_argument(
'--calib_pp_size',
type=int,
default=1,
help=
"Pipeline parallel size for calibration; effective for NeMo checkpoint only."
)
parser.add_argument("--dtype", help="Model data type.", default="float16")
parser.add_argument(
"--qformat",
help="Quantization format.",
default="full_prec",
choices=[
"fp8", "int8_sq", "int4_awq", "w4a8_awq", "int8_wo", "int4_wo",
"full_prec"
],
)
parser.add_argument(
"--seed",
help="Seed the generate random numbers, the value will be used to call"
"random.seed(value) and numpy.random.seed(value)",
type=int,
default=1234)
parser.add_argument("--tokenizer_max_seq_length",
help="Max sequence length to init the tokenizers",
type=int,
default=2048)
parser.add_argument("--batch_size",
help="Batch size for calibration.",
type=int,
default=1)
parser.add_argument("--calib_size",
help="Number of samples for calibration.",
type=int,
default=512)
parser.add_argument("--calib_max_seq_length",
help="Max sequence length for calibration",
type=int,
default=512)
parser.add_argument("--output_dir", default="exported_model")
parser.add_argument("--tp_size", type=int, default=1)
parser.add_argument("--pp_size", type=int, default=1)
parser.add_argument("--awq_block_size", type=int, default=128)
parser.add_argument("--kv_cache_dtype",
help="KV Cache dtype.",
default=None,
choices=["int8", "fp8", None])
args = parser.parse_args()
if args.model_dir is not None:
quantize_and_export(
model_dir=args.model_dir,
calib_dataset=args.calib_dataset,
dtype=args.dtype,
qformat=args.qformat,
kv_cache_dtype=args.kv_cache_dtype,
calib_size=args.calib_size,
batch_size=args.batch_size,
calib_max_seq_length=args.calib_max_seq_length,
awq_block_size=args.awq_block_size,
output_dir=args.output_dir,
tp_size=args.tp_size,
pp_size=args.pp_size,
seed=args.seed,
tokenizer_max_seq_length=args.tokenizer_max_seq_length)
elif args.nemo_ckpt_path is not None:
quantize_nemo_and_export(nemo_ckpt_path=args.nemo_ckpt_path,
decoder_type=args.decoder_type,
calib_dataset=args.calib_dataset,
calib_tp_size=args.calib_tp_size,
calib_pp_size=args.calib_pp_size,
dtype=args.dtype,
qformat=args.qformat,
kv_cache_dtype=args.kv_cache_dtype,
calib_size=args.calib_size,
batch_size=args.batch_size,
calib_max_seq_length=args.calib_max_seq_length,
awq_block_size=args.awq_block_size,
output_dir=args.output_dir,
tp_size=args.tp_size,
pp_size=args.pp_size,
seed=args.seed)
else:
raise ValueError(
"One of source checkpoint (model_dir, nemo_ckpt_path) must be specified"
)