TensorRT-LLMs/examples/recurrentgemma
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00
..
.gitignore TensorRT-LLM v0.10 update 2024-06-05 20:43:25 +08:00
convert_checkpoint.py TensorRT-LLM v0.10 update 2024-06-05 20:43:25 +08:00
README.md TensorRT-LLM v0.10 update 2024-06-05 20:43:25 +08:00
requirements.txt TensorRT-LLM v0.10 update 2024-06-05 20:43:25 +08:00

RecurrentGemma

This document shows how to build and run a RecurrentGemma model in TensorRT-LLM.

Overview

The TensorRT-LLM RecurrentGemma implementation can be found in tensorrt_llm/models/recurrentgemma/model.py. The TensorRT-LLM RecurrentGemma example code is located in examples/recurrentgemma. There is one main file:

In addition, there are two shared files in the parent folder examples for inference and evaluation:

Support Matrix

  • FP16/BF16
  • Checkpoint type: Jax, Huggingface (HF)

Usage

1. Prepare requirements and download weights

Please install required packages first and setup git-lfs:

pip install -r requirements.txt
git clone https://github.com/google-deepmind/recurrentgemma.git
pip install ./recurrentgemma/[full]
pip install "transformers>=4.40.0"

# Setup git-lfs
git lfs install

Then use one of the following commands to fetch the checkpoint you are interested in. These models are public but users need to login and then they are able to clone the models.

# recurrentgemma-2b
git clone https://huggingface.co/google/recurrentgemma-2b ./recurrentgemma_model/recurrentgemma-2b

# recurrentgemma-2b-it
git clone https://huggingface.co/google/recurrentgemma-2b-it ./recurrentgemma_model/recurrentgemma-2b-it

# recurrentgemma-2b-flax
git clone https://huggingface.co/google/recurrentgemma-2b-flax ./recurrentgemma_model/recurrentgemma-2b-flax

# recurrentgemma-2b-it-flax
git clone https://huggingface.co/google/recurrentgemma-2b-it-flax ./recurrentgemma_model/recurrentgemma-2b-it-flax

2. Convert weights from JAX to TensorRT-LLM format

The convert_checkpoint.py script converts JAX weights to TensorRT-LLM checkpoints.

# recurrentgemma-2b
CKPT_2B_PATH=./recurrentgemma_model/recurrentgemma-2b
UNIFIED_CKPT_2B_PATH=./recurrentgemma_model/recurrentgemma-2b/trt_ckpt/fp16/1-gpu/
python convert_checkpoint.py --model_dir ${CKPT_2B_PATH} \
                             --ckpt_type hf \
                             --dtype float16 \
                             --output_dir ${UNIFIED_CKPT_2B_PATH}

# recurrentgemma-2b-it
CKPT_2B_IT_PATH=./recurrentgemma_model/recurrentgemma-2b-it
UNIFIED_CKPT_2B_IT_PATH=./recurrentgemma_model/recurrentgemma-2b-it/trt_ckpt/fp16/1-gpu/
python convert_checkpoint.py --model_dir ${CKPT_2B_IT_PATH} \
                             --ckpt_type hf \
                             --dtype bfloat16 \
                             --output_dir ${UNIFIED_CKPT_2B_IT_PATH}

# recurrentgemma-2b-flax
CKPT_2B_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-flax/2b
UNIFIED_CKPT_2B_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-flax/trt_ckpt/fp16/1-gpu/
python convert_checkpoint.py --model_dir ${CKPT_2B_FLAX_PATH} \
                             --ckpt_type jax \
                             --dtype float16 \
                             --output_dir ${UNIFIED_CKPT_2B_FLAX_PATH}

# recurrentgemma-2b-it-flax
CKPT_2B_IT_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-it-flax/2b-it
UNIFIED_CKPT_2B_IT_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-it-flax/trt_ckpt/bf16/1-gpu/
python convert_checkpoint.py --model_dir ${CKPT_2B_IT_FLAX_PATH} \
                             --ckpt_type jax \
                             --dtype bfloat16 \
                             --output_dir ${UNIFIED_CKPT_2B_IT_FLAX_PATH}

3. Build TensorRT engine(s)

After getting checkpoint, we can use trtllm-build command to build TensorRT-LLM engines from TensorRT-LLM checkpoints.

# recurrentgemma-2b
ENGINE_2B_PATH=./recurrentgemma_model/recurrentgemma-2b/trt_engines/fp16/1-gpu/
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_2B_PATH} \
             --gpt_attention_plugin float16 \
             --gemm_plugin float16 \
             --mamba_conv1d_plugin float16 \
             --max_batch_size 8 \
             --max_input_len 3000 \
             --max_output_len 100 \
             --output_dir ${ENGINE_2B_PATH}

# recurrentgemma-2b-it
ENGINE_2B_IT_PATH=./recurrentgemma_model/recurrentgemma-2b-it/trt_engines/bf16/1-gpu/
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_2B_IT_PATH} \
             --gpt_attention_plugin bfloat16 \
             --gemm_plugin bfloat16 \
             --mamba_conv1d_plugin bfloat16 \
             --max_batch_size 8 \
             --max_input_len 3000 \
             --max_output_len 100 \
             --output_dir ${ENGINE_2B_IT_PATH}

# recurrentgemma-2b-flax
ENGINE_2B_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-flax/trt_engines/fp16/1-gpu/
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_2B_FLAX_PATH} \
             --gpt_attention_plugin float16 \
             --gemm_plugin float16 \
             --mamba_conv1d_plugin float16 \
             --max_batch_size 8 \
             --max_input_len 3000 \
             --max_output_len 100 \
             --output_dir ${ENGINE_2B_FLAX_PATH}

# recurrentgemma-2b-it-flax
ENGINE_2B_IT_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-it-flax/trt_engines/bf16/1-gpu/
trtllm-build --checkpoint_dir ${UNIFIED_CKPT_2B_IT_FLAX_PATH} \
             --gpt_attention_plugin bfloat16 \
             --gemm_plugin bfloat16 \
             --mamba_conv1d_plugin bfloat16 \
             --max_batch_size 8 \
             --max_input_len 3000 \
             --max_output_len 100 \
             --output_dir ${ENGINE_2B_IT_FLAX_PATH}

4. Run inference with the TensorRT engine(s)

We provide three examples to run inference run.py, summarize.py and mmlu.py. run.py only run inference with input_text and show the output.

summarize.py runs summarization on cnn_dailymail dataset and evaluate the model by ROUGE scores and use the ROUGE-1 score to validate the implementation.

mmlu.py runs MMLU to evaluate the model by accuracy.

Note that we need to download the dataset of MMLU first and the evaluation of MMLU requires more time.

  • run.py
# recurrentgemma-2b
TOKENIZER_DIR_2B_PATH=./recurrentgemma_model/recurrentgemma-2b
python3 ../run.py --max_output_len=100 \
                  --use_py_session \
                  --max_attention_window_size 2048 \
                  --tokenizer_dir ${TOKENIZER_DIR_2B_PATH} \
                  --engine_dir ${ENGINE_2B_PATH}

# recurrentgemma-2b-it
TOKENIZER_DIR_2B_IT_PATH=./recurrentgemma_model/recurrentgemma-2b-it
python3 ../run.py --max_output_len=100 \
                  --use_py_session \
                  --max_attention_window_size 2048 \
                  --tokenizer_dir ${TOKENIZER_DIR_2B_IT_PATH} \
                  --engine_dir ${ENGINE_2B_IT_PATH}

# recurrentgemma-2b-flax
VOCAB_FILE_2B_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-flax/tokenizer.model
python3 ../run.py --max_output_len=100 \
                  --use_py_session \
                  --max_attention_window_size 2048 \
                  --vocab_file ${VOCAB_FILE_2B_FLAX_PATH} \
                  --engine_dir ${ENGINE_2B_FLAX_PATH}

# recurrentgemma-2b-it-flax
VOCAB_FILE_2B_IT_FLAX_PATH=./recurrentgemma_model/recurrentgemma-2b-it-flax/tokenizer.model
python3 ../run.py --max_output_len=100 \
                  --use_py_session \
                  --max_attention_window_size 2048 \
                  --vocab_file ${VOCAB_FILE_2B_IT_FLAX_PATH} \
                  --engine_dir ${ENGINE_2B_IT_FLAX_PATH}
  • summarize.py
# recurrentgemma-2b
python3 ../summarize.py --test_trt_llm \
                        --use_py_session \
                        --engine_dir ${ENGINE_2B_PATH} \
                        --batch_size 8 \
                        --max_attention_window_size 2048 \
                        --tokenizer_dir ${TOKENIZER_DIR_2B_PATH}

# recurrentgemma-2b-it
python3 ../summarize.py --test_trt_llm \
                        --use_py_session \
                        --engine_dir ${ENGINE_2B_IT_PATH} \
                        --batch_size 8 \
                        --max_attention_window_size 2048 \
                        --tokenizer_dir ${TOKENIZER_DIR_2B_IT_PATH}

# recurrentgemma-2b-flax
python3 ../summarize.py --test_trt_llm \
                        --use_py_session \
                        --engine_dir ${ENGINE_2B_FLAX_PATH} \
                        --batch_size 8 \
                        --max_attention_window_size 2048 \
                        --vocab_file ${VOCAB_FILE_2B_FLAX_PATH}

# recurrentgemma-2b-it-flax
python3 ../summarize.py --test_trt_llm \
                        --use_py_session \
                        --engine_dir ${ENGINE_2B_IT_FLAX_PATH} \
                        --batch_size 8 \
                        --max_attention_window_size 2048 \
                        --vocab_file ${VOCAB_FILE_2B_IT_FLAX_PATH}
  • mmlu.py

Download the dataset first

mkdir data
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O data/mmlu.tar
tar -xf data/mmlu.tar -C data
mv data/data data/mmlu

Evaluate on MMLU dataset.

# recurrentgemma-2b
python3 ../mmlu.py --test_trt_llm \
                   --max_attention_window_size 2048 \
                   --tokenizer_dir ${TOKENIZER_DIR_2B_PATH} \
                   --engine_dir ${ENGINE_2B_PATH}

# recurrentgemma-2b-it
python3 ../mmlu.py --test_trt_llm \
                   --max_attention_window_size 2048 \
                   --tokenizer_dir ${TOKENIZER_DIR_2B_IT_PATH} \
                   --engine_dir ${ENGINE_2B_IT_PATH}

# recurrentgemma-2b-flax
python3 ../mmlu.py --test_trt_llm \
                   --max_attention_window_size 2048 \
                   --vocab_file ${VOCAB_FILE_2B_FLAX_PATH} \
                   --engine_dir ${ENGINE_2B_FLAX_PATH}

# recurrentgemma-2b-it-flax
python3 ../mmlu.py --test_trt_llm \
                   --max_attention_window_size 2048 \
                   --vocab_file ${VOCAB_FILE_2B_IT_FLAX_PATH} \
                   --engine_dir ${ENGINE_2B_IT_FLAX_PATH}