TensorRT-LLMs/tensorrt_llm/hlapi/llm.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

1174 lines
49 KiB
Python

import json
import os
import shutil
import tempfile
import time
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import tensorrt as trt
import torch
from .. import bindings as tllm
from .._utils import mpi_barrier, mpi_rank, release_gc
from ..auto_parallel import AutoParallelConfig, infer_cluster_config
from ..bindings import KvCacheConfig
from ..bindings.executor import CapacitySchedulerPolicy
from ..builder import BuildConfig, Engine, EngineConfig, PluginConfig, build
from ..executor import GenerationExecutor, GenerationResult
from ..logger import logger
from ..mapping import Mapping
from ..models.modeling_utils import (PretrainedConfig, QuantAlgo, QuantConfig,
load_model)
from ..module import Module
from .mpi_session import (MpiCommSession, MPINodeState, MpiPoolSession,
MpiSession, external_mpi_comm_available)
from .tokenizer import TokenizerBase, TransformersTokenizer
from .utils import (GenerationOutput, GpuArch, SamplingConfig,
file_with_glob_exists, file_with_suffix_exists,
get_device_count, print_colored, print_traceback_on_error)
@dataclass
class ParallelConfig:
''' The model distribution configs for LLM. '''
tp_size: int = 1
pp_size: int = 1
auto_parallel: bool = False
_world_size: int = field(default=1, init=False)
_devices: Optional[List[int]] = field(default=None, init=False)
@property
def devices(self) -> List[int]:
if self._devices is None:
return list(range(self.world_size))
return self._devices
@devices.setter
def devices(self, devices: List[int]):
if len(devices) != self.world_size:
raise ValueError(
f"devices {devices} should have the same length as world_size {self.world_size}"
)
self._devices = devices
@property
def world_size(self) -> bool:
if self.auto_parallel:
if self.tp_size > 1 or self.pp_size > 1:
raise RuntimeError(
"manually TP and PP are not supported in auto parallel mode."
)
return self._world_size
if self._world_size > 1:
raise RuntimeError(
"world_size > 1 is only supported in auto parallel mode.")
return self.tp_size * self.pp_size
@world_size.setter
def world_size(self, world_size: int):
if self.auto_parallel:
self._world_size = world_size
elif (not self.auto_parallel
) and world_size != self.tp_size * self.pp_size:
raise ValueError(
f"world_size {world_size} should be equal to tp_size * pp_size {self.tp_size * self.pp_size} in non-auto_parallel mode.\n"
"For non-auto-parallel mode, the world_size is not needed to set"
)
@property
def is_multi_gpu(self) -> bool:
return self.world_size > 1
@dataclass
class ModelConfig:
# ``model_dir`` helps to locate a local model, the format of the model is determined by the model file itself.
# Either HF model, TensorRT-LLM checkpoints or TensorRT-LLM engine format is supported.
model_dir: Optional[str] = None
# ``model`` could either be the model directory or a in-memory model.
# ``model`` specifies the model kind like "llama-7B", etc.
model: Optional[Union[str, Module]] = None
# ``parallel_config`` is used to specify the parallelism of the model.
parallel_config: ParallelConfig = field(default_factory=ParallelConfig)
# ``quant_config`` is used to specify the quantization mode of the model.
quant_config: QuantConfig = field(default_factory=QuantConfig)
# ``max_beam_width`` specifies the maximum beam width for beam search.
max_beam_width: int = 1
# ``plugin_config`` overwrites the underlying plugin config. Default values will be used if it's None.
# This is not suggested to be used directly, ideally the HLAPI will deduce all of options automatically.
plugin_config: Union[PluginConfig, Dict[str, Any], None] = None
def _set_additional_options(self,
max_batch_size: Optional[int] = None,
max_input_len: Optional[int] = None,
max_output_len: Optional[int] = None,
max_num_tokens: Optional[int] = None):
''' This method is used to set the additional options for the workflow, only for testing and debugging.
Note, it is not ready for production use, and may be deprecated in the future.
Usage:
config = ModelConfig(<model-path>)
# set the additional options in one time
config._set_additional_options(max_batch_size=32, max_input_len=1024)
# it is also safe to set the options in one by one
config._set_additional_options(max_batch_size=32)
config._set_additional_options(max_input_len=32)
'''
if max_batch_size is not None:
self._max_batch_size = max_batch_size
if max_input_len is not None:
self._max_input_len = max_input_len
if max_output_len is not None:
self._max_output_len = max_output_len
if max_num_tokens is not None:
self._max_num_tokens = max_num_tokens
@property
def max_batch_size(self) -> int:
return self._max_batch_size
@property
def max_input_len(self) -> int:
return self._max_input_len
@property
def max_output_len(self) -> int:
return self._max_output_len
@property
def max_num_tokens(self) -> Optional[int]:
return self._max_num_tokens
def __post_init__(self):
if not self.model_dir:
raise ValueError("model_dir is required.")
if self.model:
raise NotImplementedError("model is not supported yet.")
model_path = Path(self.model_dir)
if not model_path.exists():
raise ValueError(
f"model_dir of path {self.model_dir} does not exist.")
# The additional options, they are not suggested to configure directly, the HLAPI will deduce them.
# And they might be removed in the future.
self._max_batch_size: int = 128
self._max_input_len: int = 512
self._max_output_len: int = 200
self._max_num_tokens: Optional[int] = 4096
self._build_config: Optional[BuildConfig] = None
self._engine_config: Optional[EngineConfig] = None
self.auto_parallel_config = AutoParallelConfig(
sharded_io_allowlist=[
"past_key_value_\\d+",
"present_key_value_\\d*",
],
same_buffer_io={
"past_key_value_(\\d+)": "present_key_value_\\1",
},
**infer_cluster_config(),
)
# Load parallel_config from the engine.
self.model_format = ModelLoader.get_model_format(self.model_dir)
if self.model_format is _ModelFormatKind.TLLM_ENGINE:
self._load_config_from_engine(Path(self.model_dir))
# Load parallel_config from the checkpoint.
if ModelLoader.get_model_format(
self.model_dir) is _ModelFormatKind.TLLM_CKPT:
self._load_config_from_ckpt(Path(self.model_dir))
def _update_plugin_config(self, key: str, value: Any):
if key == 'use_paged_context_fmha':
self._validate_gpu_for_paged_context(value)
self.plugin_config = self.plugin_config or {}
if isinstance(self.plugin_config, PluginConfig):
setattr(self.plugin_config, key, value)
else:
self.plugin_config[key] = value
def _validate_gpu_for_paged_context(self, value: bool):
if value:
devices = self.parallel_config.devices
if torch.cuda.get_device_properties(devices[0]).major < 8:
raise ValueError(
"Paged context is only supported on post Volta GPUs")
def _load_config_from_engine(self, engine_dir: Path):
with open(engine_dir / "config.json") as f:
engine_config = json.load(f)
for config_key in ("pretrained_config", "build_config"):
if config_key not in engine_config:
raise ValueError(
f"Invalid engine config found from {engine_dir}, "
"please use the corresponding version of trtllm-build to build the engine."
)
pretrained_config = PretrainedConfig.from_dict(
engine_config["pretrained_config"])
build_config = BuildConfig.from_dict(engine_config["build_config"])
# load build_config
self.max_beam_width = build_config.max_beam_width
self._set_additional_options(
max_batch_size=build_config.max_batch_size,
max_input_len=build_config.max_input_len,
max_output_len=build_config.max_output_len,
max_num_tokens=build_config.max_num_tokens)
# load plugin_config
self.plugin_config = build_config.plugin_config
# load parallel_config
mapping = pretrained_config.mapping
if self.parallel_config.tp_size not in (1, mapping.tp_size):
raise ValueError(
f"tp_size {self.parallel_config.tp_size} is not consistent with the engine's tp_size {mapping.tp_size}"
)
if self.parallel_config.pp_size not in (1, mapping.pp_size):
raise ValueError(
f"pp_size {self.parallel_config.pp_size} is not consistent with the engine's pp_size {mapping.pp_size}"
)
self.parallel_config = ParallelConfig(
tp_size=mapping.tp_size,
pp_size=mapping.pp_size,
)
self._pretrined_config = pretrained_config
self._build_config = build_config
def _load_config_from_ckpt(self, ckpt_dir: Path):
with open(ckpt_dir / "config.json") as f:
ckpt_config = json.load(f)
tp_size = ckpt_config["mapping"]["tp_size"]
pp_size = ckpt_config["mapping"]["pp_size"]
world_size = ckpt_config["mapping"]["world_size"]
# load parallel_config
if self.parallel_config.tp_size != 1 and self.parallel_config.tp_size != tp_size:
raise ValueError(
f"tp_size {self.parallel_config.tp_size} is not consistent with the checkpoint's tp_size {tp_size}"
)
if self.parallel_config.pp_size != 1 and self.parallel_config.pp_size != pp_size:
raise ValueError(
f"pp_size {self.parallel_config.pp_size} is not consistent with the checkpoint's pp_size {pp_size}"
)
if (self.parallel_config.auto_parallel
and self.parallel_config.world_size != 1
and world_size != 1):
raise ValueError(
f"auto parallel with world_size {self.parallel_config.world_size} does not support checkpoint with world_size {world_size} > 1"
)
if not self.parallel_config.auto_parallel:
self.parallel_config = ParallelConfig(
tp_size=tp_size,
pp_size=pp_size,
)
@dataclass(unsafe_hash=True)
class StreamingLLMParam:
# TODO[chunweiy]: optimize the default value
max_attention_window_size: int = 2048
sink_token_length: int = 4
class LLM:
'''
An end-to-end runner for LLM tasks.
Classical usage:
config = ModelConfig(<model-path>)
llm = LLM(config)
llm.generate(["What is your name?"]) # => ["My name is Llama."]
'''
def __init__(self,
config: ModelConfig,
*,
tokenizer: Optional[TokenizerBase] = None,
kv_cache_config: Optional[KvCacheConfig] = None,
streaming_llm: Union[bool, StreamingLLMParam] = False,
async_engine_tmp_dir: Optional[str] = None,
**_additional_options: Any):
'''
Args:
config (ModelConfig):
The model config for the model.
tokenizer (TokenizerBase):
User provided tokenizer, will override the default one if exists in the HF model or TRT-LLM engine.
kv_cache_config (KvCacheConfig):
The config for the paged KV cache.
streaming_llm (bool, StreamingLLMParam):
Whether to enable the streaming LLM mode.
async_engine_tmp_dir (str):
The temporary directory to save the async engine. Only for debugging.
_additional_params:
Additional options for the model. These options are unstable and are not suggested to be used directly.
The _additional_params are not suggested to be used directly, ideally the HLAPI will deduce them. They are used for debugging and testing, and may be removed in the future.
The options includes:
enable_trt_overlap (bool):
Whether to enable the TRT overlap for the generation.
normalize_log_probs (bool):
Whether to normalize the log probabilities.
use_custom_all_reduce (bool):
Whether to use the custom all reduce for the multi-gpu case. Default is False.
multi_block_mode (bool):
Switch the optimization on multi-head attention optimization for long context decoding.
enable_chunked_context (bool):
Whether to enable the chunked context for the generation.
capacity_scheduling_policy (CapacitySchedulerPolicy)
The capacity scheduling policy for the generation.
trt_strongly_typed (bool):
Whether to create a strongly typed TensorRT plan where tensor data types are inferred from network input types and operator type specification. Enabling this option will reduce the engine building time.
embedding_parallel_mode (str):
The tensor parallelism mode for embedding module(s).
'NONE' means parallelim disabled;
'SHARDING_ALONG_VOCAB' means parallelism enabled with lookup table weight sharded along the vocab dimension;
'SHARDING_ALONG_HIDDEN' means parallelism enabled with lookup table weight sharded along the hidden dimension.
share_embedding_table (bool):
Whether to share the weight between token embedding lookup table and lm_head.
use_fused_mlp (bool):
Whether to horizontally fuse the fc and gate layers in GatedMLP. Enabling this option will reduce layer input traffic and potentially improve performance. It may also cause slight accuracy loss for FP8 PTQ because one of the quantization scaling factors is discarded.
enable_executor(bool): Whether to enable the cpp Executor.
'''
self.config = config
self._tokenizer = tokenizer
self.async_engine_tmp_dir = async_engine_tmp_dir
self.kv_cache_config = kv_cache_config
# TODO[chunweiy]: add doc for enable_streaming_llm
self.enable_streaming_llm = streaming_llm
if self.enable_streaming_llm is True:
self.enable_streaming_llm = StreamingLLMParam()
self.mpi_session: Optional[MpiSession] = None
plugin_config_alterable = self.config.model_format is not _ModelFormatKind.TLLM_ENGINE
# Read the additional options
self.normalize_log_probs = _additional_options.pop(
'normalize_log_probs', True)
# TODO[chunweiy]: Turn on the custom all reduce by default later
self.use_custom_all_reduce = _additional_options.pop(
'use_custom_all_reduce', False if plugin_config_alterable else None)
self.multi_block_mode = _additional_options.pop('multi_block_mode',
None)
if not GpuArch.is_post_ampere() and self.multi_block_mode:
logger.warning(
"The multi_block_mode is only supported on GPUs that post Ampere architecture, and it is deactivated."
)
self.multi_block_mode = None
# Chunked context is enabled by default for performance
self.enable_chunked_context = _additional_options.pop(
'enable_chunked_context', True if plugin_config_alterable else None)
self.enable_trt_overlap = _additional_options.pop(
'enable_trt_overlap', None)
self.capacity_scheduling_policy = _additional_options.pop(
'capacity_scheduling_policy',
CapacitySchedulerPolicy.GUARANTEED_NO_EVICT)
self.context_chunking_policy = _additional_options.pop(
'context_chunking_policy', None)
self._build_config = BuildConfig()
self._build_config.strongly_typed = _additional_options.pop(
'trt_strongly_typed', True)
self._build_config.use_fused_mlp = _additional_options.pop(
'use_fused_mlp', False)
self._convert_checkpoint_options = {}
embedding_parallel_mode = _additional_options.pop(
'embedding_parallel_mode', 'SHARDING_ALONG_VOCAB')
if embedding_parallel_mode == 'NONE':
self._convert_checkpoint_options['use_parallel_embedding'] = False
elif embedding_parallel_mode == 'SHARDING_ALONG_VOCAB':
self._convert_checkpoint_options['use_parallel_embedding'] = True
self._convert_checkpoint_options['embedding_sharding_dim'] = 0
elif embedding_parallel_mode == 'SHARDING_ALONG_HIDDEN':
self._convert_checkpoint_options['use_parallel_embedding'] = True
self._convert_checkpoint_options['embedding_sharding_dim'] = 1
else:
raise ValueError(
f"Invalid embedding_parallel_mode: {embedding_parallel_mode}")
self._convert_checkpoint_options[
'share_embedding_table'] = _additional_options.pop(
'share_embedding_table', False)
self.enable_executor = _additional_options.pop('enable_executor', True)
if _additional_options:
raise ValueError(f"Unknown options {_additional_options}")
devices = self.config.parallel_config.devices
if torch.cuda.get_device_properties(devices[0]).major < 8:
logger.info(
f"Disable the chunked context on GPUs that predate the Volta architecture."
)
self.enable_chunked_context = False
if self.config.parallel_config.is_multi_gpu:
if get_device_count() < self.config.parallel_config.world_size:
raise RuntimeError(
f"Only {get_device_count()} GPUs are available, but {self.config.parallel_config.world_size} are required."
)
logger.info(
f'start MpiSession with {self.config.parallel_config.world_size} workers'
)
if not external_mpi_comm_available(
self.config.parallel_config.world_size):
self.mpi_session = MpiPoolSession(
n_workers=self.config.parallel_config.world_size)
else:
self.mpi_session = MpiCommSession(
n_workers=self.config.parallel_config.world_size)
# Due to the gptManager can only accept a engine path, we need to save the engine to a directory
self._engine_dir: Union[tempfile.TemporaryDirectory, str, Path,
None] = None
self._executor: Optional[GenerationExecutor] = None
self._workspace = tempfile.TemporaryDirectory("llm-workspace")
self.runtime_context: Optional[_ModelRuntimeContext] = None
# Update the dependency config if necessary
# When got an engine, the plugin config are fixed, shouldn't be altered.
# TODO[chunweiy]: Refine the rules here and make them easy to be updated through versions
# TODO[chunweiy]: Deal with the rules those depend on each other
if self.config.model_format is not _ModelFormatKind.TLLM_ENGINE:
if self.enable_streaming_llm:
self.config._update_plugin_config("streamingllm", True)
self.kv_cache_config = KvCacheConfig(
) if self.kv_cache_config is None else self.kv_cache_config
self.kv_cache_config.max_attention_window = self.enable_streaming_llm.max_attention_window_size
self.kv_cache_config.sink_token_length = self.enable_streaming_llm.sink_token_length
# Turn off the conflict perf-optim strategies
if self.kv_cache_config.enable_block_reuse:
logger.warning(
f"Disable KvCacheConfig.enable_block_reuse since it is conflict with StreamingLLM feature."
)
self.kv_cache_config.enable_block_reuse = False
if self.enable_chunked_context:
logger.warning(
f"Disable Chunked Context since it is conflict with StreamingLLM feature."
)
self.enable_chunked_context = False
if self.kv_cache_config is not None:
if self.kv_cache_config.enable_block_reuse:
logger.info(
f"Turn on `use_paged_context_fmha` due to enable_block_reuse"
)
self.config._update_plugin_config("use_paged_context_fmha",
True)
if self.config.quant_config.quant_algo is QuantAlgo.FP8:
self.enable_chunked_context = False
self.config._update_plugin_config("use_paged_context_fmha",
False)
if self.enable_chunked_context is not None:
self.config._update_plugin_config("enable_chunked_context",
self.enable_chunked_context)
if self.enable_chunked_context is True:
self.config._update_plugin_config("use_paged_context_fmha",
True)
if self.multi_block_mode is not None:
self.config._update_plugin_config("multi_block_mode",
self.multi_block_mode)
if self.use_custom_all_reduce is not None:
self.config._update_plugin_config("use_custom_all_reduce",
self.use_custom_all_reduce)
self._build_model()
def generate(
self,
prompts: Union[Iterable[str], Iterable[List[int]]],
sampling_config: Optional[Union[SamplingConfig,
List[SamplingConfig]]] = None,
) -> Iterable[GenerationOutput]:
''' Generate the output for the given inputs.
Args:
prompts: The raw text or token ids to the model.
sampling_config: The sampling config for the generation, a default one will be used if not provided.
'''
prompts = list(prompts)
if sampling_config is None:
sampling_config = self.get_default_sampling_config()
results = self._executor.generate(
prompts,
sampling_config=sampling_config,
exclude_input_from_output=self.enable_executor,
)
return results
def generate_async(self,
prompt: Union[str, List[int]],
sampling_config: Optional[SamplingConfig] = None,
streaming: bool = False) -> GenerationResult:
''' Generate in asynchronuous mode.
Args:
prompt: The raw text or token ids to the model.
sampling_config: The sampling config for the generation, a default one will be used if not provided.
streaming: Whether to use the streaming mode for the generation.
'''
if sampling_config is None:
sampling_config = self.get_default_sampling_config()
self._generate_check_arguments([prompt], sampling_config)
results = self._executor.generate_async(
prompt,
streaming=streaming,
sampling_config=sampling_config,
exclude_input_from_output=self.enable_executor)
return results
def _generate_check_arguments(self, prompts,
sampling_config: SamplingConfig):
if sampling_config is None:
raise ValueError("The sampling_config should to be provided.")
if sampling_config.top_k is not None or sampling_config.top_p is not None:
raise ValueError("The top_k and top_p are not supported yet.")
sampling_configs = [sampling_config] if isinstance(
sampling_config, SamplingConfig) else sampling_config
max_num_beams = max([sc.beam_width for sc in sampling_configs])
if max_num_beams > self.config.max_beam_width:
raise ValueError(
f"num_beams is larger than the maximum in the built engine {max_num_beams} > {self.config.max_beam_width}"
)
if len(prompts) > self.config.max_batch_size:
raise ValueError(
f"Batch size {len(prompts)} is larger than the maximum in the built engine {self.config.max_batch_size}"
)
input_digits = False
if isinstance(prompts[0], list):
input_digits = True
if input_digits and sum(
len(prompt) for prompt in prompts) > self.config.max_num_tokens:
raise ValueError(f"The total input length is too large")
if not input_digits:
if max(len(prompt.split())
for prompt in prompts) > self.config.max_input_len:
raise ValueError(
f"Input length is larger than the maximum in the built engine"
)
@property
def tokenizer(self) -> TokenizerBase:
if self._tokenizer is not None:
return self._tokenizer
if self.runtime_context is not None:
return self.runtime_context.tokenizer
def save(self, engine_dir: str):
''' Save the built engine to the given path. '''
logger.info(f"Save model to {engine_dir}")
if self._engine_dir is None:
raise RuntimeError("The engine is not built yet.")
src_engine_dir = self._engine_dir.name if isinstance(
self._engine_dir, tempfile.TemporaryDirectory) else self._engine_dir
if os.path.abspath(src_engine_dir) != os.path.abspath(engine_dir):
shutil.copytree(src_engine_dir, engine_dir, dirs_exist_ok=True)
def shutdown(self):
if hasattr(self, "_executor") and self._executor is not None:
self._executor.shutdown()
if self.mpi_session is not None:
self.mpi_session.shutdown()
self.mpi_session = None
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
del exc_value, traceback
self.shutdown()
return exc_type is not None
def _save_engine(self, engine_dir: str):
logger.info(f"Save model to {engine_dir}")
if self.config.parallel_config.is_multi_gpu:
if self._executor is not None:
self._executor.shutdown()
self.mpi_session.submit_sync(LLM._node_save_task, engine_dir,
self.config.model_dir)
else:
ModelLoader.save(self.runtime_context,
self.config.model_dir,
engine_dir=engine_dir,
model_info=self.runtime_context.model_info)
def get_default_sampling_config(self) -> Optional[SamplingConfig]:
''' Get the default sampling config for the model.
You can override the options.
'''
tokenizer = self.tokenizer
if tokenizer is None:
try:
tokenizer = ModelLoader.load_hf_tokenizer(self.config.model_dir)
except:
return None
return SamplingConfig(
end_id=tokenizer.eos_token_id,
pad_id=tokenizer.eos_token_id
if tokenizer.pad_token_id is None else tokenizer.pad_token_id,
)
def _build_model(self):
model_format = ModelLoader.get_model_format(self.config.model_dir)
self._engine_dir = self.config.model_dir
def get_engine_dir():
return self._engine_dir.name if isinstance(
self._engine_dir,
tempfile.TemporaryDirectory) else self._engine_dir
if model_format is not _ModelFormatKind.TLLM_ENGINE:
if self._executor is not None:
self._executor.shutdown()
self._engine_dir = self.async_engine_tmp_dir
if self._engine_dir is None:
self._engine_dir = tempfile.TemporaryDirectory()
if self.config.parallel_config.is_multi_gpu:
self.mpi_session.submit_sync(
LLM._node_build_task,
self.config,
self._tokenizer,
self._workspace.name,
build_config=self._build_config,
convert_checkpoint_options=self._convert_checkpoint_options,
)
self._save_engine(get_engine_dir())
self.mpi_session.submit_sync(LLM._node_free_state_task)
else:
with ModelLoader(
self.config,
tokenizer=self._tokenizer,
workspace=self._workspace.name,
build_config=self._build_config,
convert_checkpoint_options=self.
_convert_checkpoint_options,
) as model_loader:
runtime_context = model_loader()
# TODO[chunweiy]: Make GptManager support in-memory engine-buffer to save disk loading latency
ModelLoader.save(runtime_context,
self.config.model_dir,
engine_dir=get_engine_dir(),
model_info=runtime_context.model_info)
# Once saved, the engine_buffer is not needed anymore
del runtime_context
release_gc()
tokenizer = self.tokenizer
if not isinstance(tokenizer, TokenizerBase):
tokenizer = ModelLoader.load_hf_tokenizer(self.config.model_dir)
executor_config = tllm.TrtGptModelOptionalParams()
if self.kv_cache_config is not None:
executor_config.kv_cache_config = self.kv_cache_config
executor_config.enable_trt_overlap = self.enable_trt_overlap
executor_config.normalize_log_probs = self.normalize_log_probs
executor_config.enable_chunked_context = self.enable_chunked_context
self._executor = GenerationExecutor.create(
get_engine_dir(),
tokenizer,
max_beam_width=self.config.max_beam_width,
executor_config=executor_config,
scheduler_config=tllm.executor.SchedulerConfig(
self.capacity_scheduling_policy, self.context_chunking_policy),
model_world_size=self.config.parallel_config.world_size,
mpi_session=self.mpi_session,
executor_type=tllm.TrtGptModelType.InflightFusedBatching,
reuse_mpi_comm=external_mpi_comm_available(
self.config.parallel_config.world_size),
use_executor_bindings=self.enable_executor,
)
@print_traceback_on_error
@staticmethod
def _node_build_task(
config: ModelConfig,
tokenizer: Optional[TokenizerBase] = None,
workspace: Optional[str] = None,
build_config: Optional[BuildConfig] = None,
convert_checkpoint_options: Optional[dict] = None) -> bool:
if MPINodeState.is_initialized():
raise RuntimeError("The MPI node is already initialized.")
with ModelLoader(config,
tokenizer=tokenizer,
workspace=workspace,
build_config=build_config,
convert_checkpoint_options=convert_checkpoint_options
) as model_loader:
runtime_context = model_loader()
# Hold the model builder for later use
MPINodeState.state = runtime_context
return True
@print_traceback_on_error
@staticmethod
def _node_save_task(engine_dir: str, model_dir: str):
runtime_context: _ModelRuntimeContext = MPINodeState.state
if not isinstance(runtime_context, _ModelRuntimeContext):
raise RuntimeError("Model is not built yet.")
ModelLoader.save(runtime_context,
model_dir,
engine_dir=engine_dir,
model_info=runtime_context.model_info)
@print_traceback_on_error
@staticmethod
def _node_free_state_task():
MPINodeState.state = None
# release the large resource explicitly and immediately, since the following LLM pipeline may need a lot of memory
release_gc()
def __getstate__(self):
raise RuntimeError("LLM object can not be pickled.")
def __del__(self):
self.shutdown()
class _ModelFormatKind(Enum):
HF = 0
TLLM_CKPT = 1
TLLM_ENGINE = 2
@dataclass
class _ModelInfo:
dtype: Optional[str] = None
architecture: Optional[str] = None
@property
def model_name(self) -> str:
if self.architecture is None:
raise RuntimeError("The architecture is not set yet.")
return self.architecture
@classmethod
def from_pretrained_config(cls, config: PretrainedConfig):
return cls(dtype=config.dtype, architecture=config.architecture)
@classmethod
def from_builder_config_json(cls, config: dict):
if 'version' in config:
# The Dict format is { 'builder_config':..., 'plugin_config':...}
dtype = config['plugin_config']['gpt_attention_plugin']
else:
dtype = config['pretrained_config']['dtype']
return cls(dtype=dtype, architecture=config['builder_config']['name'])
@classmethod
def from_module(cls, module: Module):
raise NotImplementedError()
@dataclass
class _ModelRuntimeContext:
''' _ModelRuntimeContext holds the minimum runtime resources for running a model.
It could be a runtime cache in MPI nodes.
'''
engine_buffer: Optional[trt.IHostMemory] = None
tokenizer: Optional[TokenizerBase] = None
# engine_config is only used for saving the engine to disk
engine_config: Optional[Union[dict, EngineConfig]] = None
mapping: Optional[Mapping] = None
model_info: Optional[_ModelInfo] = None
@property
def engine(self) -> trt.IHostMemory:
assert self.engine_buffer is not None
return self.engine_buffer
@property
def model_structure(self) -> str:
# "LlaMACausalForLM" or "OPTForCausalLM" and so on
return self.engine_config.pretrained_config['architecture']
class ModelLoader:
''' The ModelLoader is used to build an end-to-end model from a model config.
It will construct the runtime resources including engine, tokenizer, model runner etc for a single gpu.
'''
def __init__(self,
config: ModelConfig,
tokenizer: Optional[TokenizerBase],
workspace: Optional[str] = None,
build_config: Optional[BuildConfig] = None,
convert_checkpoint_options: Optional[dict] = None):
self.config = config
self.tokenizer = tokenizer
self.workspace = workspace
self.build_config = build_config or BuildConfig()
self.convert_checkpoint_options = {} if convert_checkpoint_options is None else convert_checkpoint_options
self.rank = mpi_rank() if config.parallel_config.is_multi_gpu else 0
if config.parallel_config.is_multi_gpu and not config.parallel_config.auto_parallel:
self.mapping = Mapping(
tp_size=config.parallel_config.tp_size,
pp_size=config.parallel_config.pp_size,
rank=self.rank,
world_size=config.parallel_config.world_size,
)
else:
self.mapping = Mapping()
self._model_pipeline = []
self._model_dir = self.config.model_dir
self._model_info: Optional[_ModelInfo] = None
self._model_name = self.config.model
self.auto_parallel_config = AutoParallelConfig(
world_size=config.parallel_config.world_size if config.
parallel_config.auto_parallel else 1)
default_config = self.config.auto_parallel_config
self.auto_parallel_config.set_defaults(
cluster_key=default_config.cluster_key,
cluster_info=default_config.cluster_info,
same_buffer_io=default_config.same_buffer_io,
sharded_io_allowlist=default_config.sharded_io_allowlist,
)
# Prepare the model processing pipeline
if isinstance(self.config.model, Module):
''' Build engine from user provided model '''
self._model_pipeline.append(
("Build TensorRT-LLM engine",
self._build_engine_from_inmemory_model))
return
if self.config.model_dir is None:
''' Download HF model if necessary '''
# TODO[chunweiy]: Support HF model download
raise NotImplementedError()
if self._model_dir is None:
raise ValueError("The model_dir is not set yet.")
self._model_format = ModelLoader.get_model_format(self._model_dir)
if self._model_format is _ModelFormatKind.HF:
''' HF -> TRT checkpoints -> engine '''
self._model_pipeline.append(
("Load HF model to memory", self._load_model_from_hf))
self._model_pipeline.append(
("Build TRT-LLM engine", self._build_engine))
elif self._model_format is _ModelFormatKind.TLLM_CKPT:
''' TRT checkpoints -> engine '''
self._model_pipeline.append(
("Load TRT checkpoints to memory", self._load_model_from_ckpt))
self._model_pipeline.append(
("Build TRT-LLM engine", self._build_engine))
elif self._model_format is _ModelFormatKind.TLLM_ENGINE:
''' TFRT engine '''
self._model_pipeline.append(
("Load TensorRT-LLM engine", self._load_engine_buffer))
else:
raise ValueError(f"Unknown model format {self._model_format}")
if self.tokenizer is None:
''' Use the default tokenizer if no one is provided. '''
self._model_pipeline.append(
("Initialize tokenizer", self._load_hf_tokenizer))
def __call__(self) -> _ModelRuntimeContext:
if self.config.parallel_config.is_multi_gpu:
torch.cuda.set_device(self.rank)
n_steps = len(self._model_pipeline)
to_log = self.rank == 0
overall_start_time = time.time()
for off, (info, step) in enumerate(self._model_pipeline):
if to_log:
print_colored("Loading Model: ")
print_colored(f"[{off+1}/{n_steps}]\t", 'bold_green')
print_colored(f"{info}\n")
start_time = time.time()
step()
latency = time.time() - start_time
if to_log:
print_colored("Time: {:.3f}s\n".format(latency), 'grey')
overall_latency = time.time() - overall_start_time
if to_log:
print_colored("Loading model done.\n", 'bold_green')
print_colored('Total latency: {:.3f}s\n'.format(overall_latency),
'grey')
if self._engine_buffer is None:
raise RuntimeError("The engine is not built yet.")
if not hasattr(self, '_engine_config'):
raise RuntimeError("config is not loaded.")
config = self._engine_config
return _ModelRuntimeContext(
tokenizer=self.tokenizer,
engine_buffer=self._engine_buffer,
engine_config=config,
mapping=self.mapping,
model_info=self._model_info,
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
for attr_name in dir(self):
if not callable(getattr(
self, attr_name)) and not attr_name.startswith("__"):
if attr_name not in ('model_format', ):
setattr(self, attr_name, None)
release_gc()
@property
def model_format(self) -> _ModelFormatKind:
return self._model_format
# TODO[tali]: Replace this with a lower-level API
@staticmethod
def save(
model: _ModelRuntimeContext,
model_dir: str,
engine_dir: str,
model_info: _ModelInfo,
):
''' Save the built engine on a single GPU to the given path. '''
mapping = model.mapping
rank = mapping.rank
def copy_hf_tokenizer_data_to_engine_dir():
# Copy the HF tokenizer stuff to the engine dir so that we can use the engine dir as a standalone model dir supports end-to-end task.
# This is only for HF model for now, not available for users' customized tokenizers.
import shutil
for name in os.listdir(model_dir):
src = os.path.join(model_dir, name)
dst = os.path.join(engine_dir, name)
if name.startswith('tokenizer'):
if os.path.isdir(src):
shutil.copytree(src, dst, dirs_exist_ok=True)
else:
shutil.copy2(src, dst)
engine = Engine(config=model.engine_config, engine=model.engine)
engine.save(engine_dir)
if rank == 0 and isinstance(model.tokenizer, TransformersTokenizer):
copy_hf_tokenizer_data_to_engine_dir()
@staticmethod
def get_model_format(model_dir: str) -> _ModelFormatKind:
''' Get the format of the model. '''
# TODO: migrate to detect version field in config.json after TRTLLM-256 finished
if Path.exists(
Path(model_dir) / 'config.json') and file_with_glob_exists(
model_dir, 'rank*.safetensors'):
return _ModelFormatKind.TLLM_CKPT
if (Path.exists(Path(model_dir) / 'config.json')
and (file_with_suffix_exists(model_dir, '.bin')
or file_with_suffix_exists(model_dir, '.safetensors'))):
return _ModelFormatKind.HF
if Path.exists(
Path(model_dir) / 'config.json') and file_with_suffix_exists(
model_dir, '.engine'):
return _ModelFormatKind.TLLM_ENGINE
raise ValueError(f"Unknown model format for {model_dir}")
def _download_hf_model(self):
''' Download HF model. '''
raise NotImplementedError()
def _load_model_from_hf(self):
''' Load a TRT-LLM model from a HF model. '''
from ..models import LLaMAForCausalLM
assert self._model_dir is not None
import transformers
_pretrained_config = transformers.PretrainedConfig.from_json_file(
os.path.join(self._model_dir, 'config.json'))
model_arch = _pretrained_config.architectures[0]
# TODO[chunweiy]: add more models if ready
model2struct = dict(
LlamaForCausalLM=LLaMAForCausalLM,
MixtralForCausalLM=LLaMAForCausalLM,
)
if model_arch not in model2struct:
raise KeyError(
f"Unsupported model architecture: {model_arch}, "
f"only {', '.join(model2struct.keys())} are supported now.")
if self.config.quant_config.quant_mode.has_any_quant():
assert self.workspace is not None
checkpoint_dir = f"{self.workspace}/quantized-checkpoint"
if self.rank == 0:
model2struct[model_arch].quantize(
self._model_dir,
checkpoint_dir,
self.config.quant_config,
mapping=self.mapping,
)
if self.config.parallel_config.is_multi_gpu:
mpi_barrier()
self.model = model2struct[model_arch].from_checkpoint(
checkpoint_dir, rank=self.mapping.rank)
else:
self.model = model2struct[model_arch].from_hugging_face(
self._model_dir,
mapping=self.mapping,
quantization=self.config.quant_config,
load_model_on_cpu=
True, # TODO:TRTLLM-195 to enhance the weights loading memory usage and chose best location
override_fields=self.convert_checkpoint_options,
)
self.pretrained_config = self.model.config
self._model_info = _ModelInfo.from_pretrained_config(
self.pretrained_config)
def _load_model_from_ckpt(self):
''' Load a TRT-LLM model from checkpoint. '''
model_config = PretrainedConfig.from_json_file(
os.path.join(self._model_dir, 'config.json'))
model_config.mapping = self.mapping
self.model = load_model(model_config, self._model_dir)
self.pretrained_config = model_config
self._model_info = _ModelInfo.from_pretrained_config(
self.pretrained_config)
def _build_engine_from_inmemory_model(self):
assert isinstance(self.config.model, Module)
self._model_info = _ModelInfo.from_module(self.model)
def _build_engine(self):
plugin_config = self.config.plugin_config
if not isinstance(self.config.plugin_config, PluginConfig):
plugin_config = self.model.default_plugin_config()
# patch the additional options
if self.config.plugin_config is not None:
assert isinstance(self.config.plugin_config, dict)
for k, v in self.config.plugin_config.items():
setattr(plugin_config, k, v)
self.build_config.update(
max_input_len=self.config.max_input_len,
max_output_len=self.config.max_output_len,
max_batch_size=self.config.max_batch_size,
max_beam_width=self.config.max_beam_width,
max_num_tokens=self.config.max_num_tokens,
auto_parallel_config=self.auto_parallel_config,
plugin_config=plugin_config,
)
if self.auto_parallel_config.enabled:
self.model.config.mapping.rank = self.rank
engine = build(self.model, self.build_config)
self._engine_buffer = engine.engine
self._engine_config = engine.config
self.mapping = self.model.config.mapping
# delete the model explicitly to free all the build-time resources
self.model = None
def _load_engine_buffer(self):
# Load engine buffer from disk
engine = Engine.from_dir(self._model_dir)
self._engine_buffer = engine.engine
self._engine_config = engine.config
def _load_hf_tokenizer(self):
if self._model_dir:
self.tokenizer = ModelLoader.load_hf_tokenizer(self._model_dir)
if self.tokenizer is None:
logger.warning(
f"failed to load HuggingFace tokenizer from {self._model_dir}\n"
"You can also try to copy the tokenizer* files from HuggingFace model to the engine directory manually."
)
@staticmethod
def load_extra_build_configs_from_engine(
model_dir: str) -> Optional[Namespace]:
''' Load the extra build configs from the engine directory, return None if model isn't an engine. '''
if ModelLoader.get_model_format(
model_dir) is not _ModelFormatKind.TLLM_ENGINE:
return None
with open(Path(model_dir) / "config.json", "r") as f:
engine_config = json.load(f)
# TODO[chunweiy]: Remove the following if-check after the engine config is unified.
if 'build_config' not in engine_config:
return None
build_config = engine_config['build_config']
build_config.pop("plugin_config")
return Namespace(**build_config)
@staticmethod
def load_hf_tokenizer(model_dir) -> Optional[TransformersTokenizer]:
try:
return TransformersTokenizer.from_pretrained(model_dir,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True)
except:
return None