mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-27 06:03:09 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
66 lines
2.1 KiB
Python
66 lines
2.1 KiB
Python
from pathlib import Path
|
|
from typing import Any, List, Union
|
|
|
|
from transformers import AutoTokenizer, PreTrainedTokenizerBase
|
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
|
|
|
TokenIdsTy = List[int]
|
|
|
|
|
|
class TokenizerBase(PreTrainedTokenizerBase):
|
|
''' This is a protocol for the tokenizer. Users can implement their own tokenizer by inheriting this class. '''
|
|
|
|
|
|
class TransformersTokenizer(TokenizerBase):
|
|
''' A wrapper for the Transformers' tokenizer.
|
|
This is the default tokenizer for LLM. '''
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_dir: str, **kwargs):
|
|
from transformers import AutoTokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir,
|
|
**kwargs)
|
|
return TransformersTokenizer(tokenizer)
|
|
|
|
def __init__(self, tokenizer):
|
|
self.tokenizer = tokenizer
|
|
|
|
def __call__(self, text: str, *args, **kwargs) -> Any:
|
|
return self.tokenizer(text, *args, **kwargs)
|
|
|
|
@property
|
|
def eos_token_id(self) -> int:
|
|
return self.tokenizer.eos_token_id
|
|
|
|
@property
|
|
def pad_token_id(self) -> int:
|
|
return self.tokenizer.pad_token_id
|
|
|
|
def encode(self, text: str, *args, **kwargs) -> TokenIdsTy:
|
|
return self.tokenizer.encode(text, *args, **kwargs)
|
|
|
|
def decode(self, token_ids: TokenIdsTy, *args, **kwargs) -> str:
|
|
return self.tokenizer.decode(token_ids, *args, **kwargs)
|
|
|
|
def batch_encode_plus(self, texts: List[str], *args, **kwargs) -> dict:
|
|
return self.tokenizer.batch_encode_plus(texts, *args, **kwargs)
|
|
|
|
|
|
def tokenizer_factory(
|
|
obj: Union[str, Path, TokenizerBase, PreTrainedTokenizerBase, None],
|
|
**kwargs) -> Union[TokenizerBase, PreTrainedTokenizerBase, None]:
|
|
if obj is None:
|
|
return None
|
|
if isinstance(obj, (str, Path)):
|
|
default_kwargs = {
|
|
'legacy': False,
|
|
'padding_side': 'left',
|
|
'truncation_side': 'left',
|
|
'trust_remote_code': True,
|
|
'use_fast': True,
|
|
}
|
|
default_kwargs.update(kwargs)
|
|
return AutoTokenizer.from_pretrained(obj, **kwargs)
|
|
|
|
return obj
|