mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-24 12:42:54 +08:00
* TensorRT-LLM Release 0.10.0 --------- Co-authored-by: Loki <lokravi@amazon.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
178 lines
6.1 KiB
Python
178 lines
6.1 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import torch
|
|
# isort: on
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_lt(self, dtype='float32'):
|
|
t_shape = (2, 3)
|
|
x_data = torch.rand(t_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
y_data = torch.rand(t_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=t_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
y = Tensor(name='y',
|
|
shape=t_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = tensorrt_llm.functional.lt(x, y).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
'y': y_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
ref = torch.lt(x_data, y_data)
|
|
# compare diff
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
return
|
|
|
|
@parameterized.expand(list(product(['float32'])))
|
|
def test_log(self, dtype):
|
|
# test data
|
|
x_shape = (4, 6, 8)
|
|
x_data = torch.rand(x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = tensorrt_llm.functional.log(x).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
ref = x_data.log()
|
|
|
|
# compare diff
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
@parameterized.expand(list(product(['float32'], [0, 1, 2], [False, True])))
|
|
def test_sum(self, dtype, dim, keepdim):
|
|
# test data
|
|
x_shape = (4, 6, 8)
|
|
x_data = torch.rand(x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = tensorrt_llm.functional.sum(x, dim, keepdim).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
ref = x_data.sum(dim=dim, keepdim=keepdim)
|
|
|
|
# compare diff
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
@parameterized.expand(list(product(['float32'], [0, 1, 2])))
|
|
def test_log_softmax(self, dtype, dim):
|
|
# test data
|
|
x_shape = (4, 6, 8)
|
|
x_data = torch.rand(x_shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = tensorrt_llm.functional.log_softmax(x, dim=dim).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
})
|
|
|
|
# pytorch run
|
|
ref = x_data.log_softmax(dim=dim)
|
|
|
|
# compare diff
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|