TensorRT-LLMs/tests/functional/test_logsoftmax.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

178 lines
6.1 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from itertools import product
import numpy as np
# isort: off
import torch
# isort: on
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_lt(self, dtype='float32'):
t_shape = (2, 3)
x_data = torch.rand(t_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
y_data = torch.rand(t_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=t_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=t_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.lt(x, y).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
'y': y_data.numpy(),
})
# pytorch run
ref = torch.lt(x_data, y_data)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
return
@parameterized.expand(list(product(['float32'])))
def test_log(self, dtype):
# test data
x_shape = (4, 6, 8)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.log(x).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
})
# pytorch run
ref = x_data.log()
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
@parameterized.expand(list(product(['float32'], [0, 1, 2], [False, True])))
def test_sum(self, dtype, dim, keepdim):
# test data
x_shape = (4, 6, 8)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.sum(x, dim, keepdim).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
})
# pytorch run
ref = x_data.sum(dim=dim, keepdim=keepdim)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
@parameterized.expand(list(product(['float32'], [0, 1, 2])))
def test_log_softmax(self, dtype, dim):
# test data
x_shape = (4, 6, 8)
x_data = torch.rand(x_shape,
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.log_softmax(x, dim=dim).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
})
# pytorch run
ref = x_data.log_softmax(dim=dim)
# compare diff
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)