TensorRT-LLMs/tests/functional/test_selective_scan.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

242 lines
11 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
from itertools import product
import numpy as np
import torch
from parameterized import parameterized
from torch_ref import selective_scan_ref, selective_state_update_ref
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import skip_bf16_pre_ampere, unittest_name_func
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand(list(
product([2048], [16], ['context', 'generation'],
['float16', 'float32', 'bfloat16'], [3], [16], [False, True])),
name_func=unittest_name_func)
def test_selective_scan(self, dim, dstate, req_type, dtype, batch_size,
max_seq_len, remove_padding):
# Skip tests that are not supported in pre-ampere architecture
skip_bf16_pre_ampere(dtype)
# configs
device = "cuda"
seq_len = max_seq_len if req_type == 'context' else 1
dt_rank = 160
is_variable_B = True
is_variable_C = True
delta_softplus = True
# test data
torch.random.manual_seed(0)
if remove_padding:
last_token_ids = torch.randint(1,
seq_len + 1, (batch_size, ),
dtype=torch.int32)
last_token_ids = torch.cumsum(last_token_ids,
dim=0,
dtype=torch.int32).to(device)
total_num_tokens = last_token_ids[batch_size - 1]
else:
last_token_ids = torch.ones(
(batch_size, ), dtype=torch.int32, device=device) * seq_len
total_num_tokens = batch_size * seq_len
state = torch.randn(batch_size,
dstate,
dim,
device=device,
dtype=str_dtype_to_torch(dtype))
x = torch.randn(total_num_tokens,
dim,
device=device,
dtype=str_dtype_to_torch(dtype))
dt = torch.randn(total_num_tokens,
dim,
device=device,
dtype=str_dtype_to_torch(dtype))
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dstate, dim, device=device) - 1.0
BC = torch.randn(total_num_tokens,
dt_rank + dstate * 2,
device=device,
dtype=str_dtype_to_torch(dtype))
D = torch.randn(dim, device=device)
z = torch.randn_like(x)
host_request_types = torch.tensor([0 if req_type == 'context' else 1] *
batch_size,
dtype=torch.int32)
if not remove_padding or req_type == 'generation':
x = x.view(-1, seq_len, dim)
dt = dt.view(-1, seq_len, dim)
BC = BC.view(-1, seq_len, dt_rank + dstate * 2)
z = z.view(-1, seq_len, dim)
output = torch.zeros(x.shape,
device=device,
dtype=str_dtype_to_torch(dtype))
state_ref = state.detach().clone()
x_ref = x.detach().clone()
dt_ref = dt.detach().clone()
dt_bias_ref = dt_bias.detach().clone()
A_ref = A.detach().clone()
B_ref = BC[..., dt_rank:dt_rank + dstate].detach().clone()
C_ref = BC[..., dt_rank + dstate:].detach().clone()
D_ref = D.detach().clone()
z_ref = z.detach().clone()
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
if remove_padding:
net.plugin_config.enable_remove_input_padding()
else:
net.plugin_config.remove_input_padding = False
net.plugin_config.paged_state = False
with tensorrt_llm.net_guard(net):
x_tensor = Tensor(name='input',
shape=x.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
state_tensor = Tensor(name='state',
shape=state.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
dt_tensor = Tensor(name='delta',
shape=dt.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
dt_bias_tensor = Tensor(
name='delta_bias',
shape=dt_bias.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
A_tensor = Tensor(name='A',
shape=A.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
BC_tensor = Tensor(name='BC',
shape=BC.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
D_tensor = Tensor(name='D',
shape=D.shape,
dtype=tensorrt_llm.str_dtype_to_trt('float32'))
z_tensor = Tensor(name='z',
shape=z.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
host_request_types_tensor = Tensor(
name='host_request_types',
shape=host_request_types.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
last_token_ids_tensor = Tensor(
name='last_token_ids',
shape=last_token_ids.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
outputs = tensorrt_llm.functional.selective_scan(
x_tensor, state_tensor, dt_tensor, dt_bias_tensor, A_tensor,
BC_tensor, D_tensor, z_tensor, host_request_types_tensor,
last_token_ids_tensor, dim, dstate, dt_rank, is_variable_B,
is_variable_C, delta_softplus, dtype)
net._mark_output(outputs[0],
'output',
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
net._mark_output(outputs[1],
'present_state',
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
# trt run
inputs = {
'input': x,
'state': state,
'delta': dt,
'delta_bias': dt_bias,
'A': A,
'BC': BC,
'D': D,
'z': z,
'host_request_types': host_request_types,
'last_token_ids': last_token_ids
}
outputs = {'output': output, 'present_state': state}
stream = torch.cuda.current_stream()
builder_config = builder.create_builder_config(precision=dtype, )
engine = builder.build_engine(net, builder_config)
session = tensorrt_llm.runtime.Session.from_serialized_engine(engine)
session.run(inputs=inputs, outputs=outputs, stream=stream.cuda_stream)
out_ref = torch.zeros(output.shape,
device=device,
dtype=str_dtype_to_torch(dtype))
if req_type == 'context':
# pytorch run
if remove_padding:
for i in range(batch_size):
start_id = 0 if i == 0 else last_token_ids[i - 1]
end_id = last_token_ids[i]
part_out_ref, part_state_ref = selective_scan_ref(
x_ref[start_id:end_id].unsqueeze(0),
dt_ref[start_id:end_id].unsqueeze(0),
A_ref,
B_ref[start_id:end_id].unsqueeze(0),
C_ref[start_id:end_id].unsqueeze(0),
D=D_ref,
z=z_ref[start_id:end_id].unsqueeze(0),
delta_bias=dt_bias_ref,
delta_softplus=True)
out_ref[start_id:end_id][:] = part_out_ref.squeeze(0)
state_ref[i][:][:] = part_state_ref.squeeze(0)
else:
out_ref, state_ref = selective_scan_ref(x_ref,
dt_ref,
A_ref,
B_ref,
C_ref,
D=D_ref,
z=z_ref,
delta_bias=dt_bias_ref,
delta_softplus=True)
elif req_type == 'generation':
# pytorch run
out_ref = selective_state_update_ref(state_ref,
x_ref.squeeze(1),
dt_ref.squeeze(1),
A_ref,
B_ref.squeeze(1),
C_ref.squeeze(1),
D=D_ref,
z=z_ref.squeeze(1),
dt_bias=dt_bias_ref,
dt_softplus=True)
out_ref = out_ref.unsqueeze(1)
dtype_atol = {"float16": 5e-3, "float32": 2e-3, "bfloat16": 5e-2}
output_cpu = outputs['output'].to(torch.float32).cpu()
present_state_cpu = outputs['present_state'].to(torch.float32).cpu()
np.testing.assert_allclose(out_ref.to(torch.float32).cpu().numpy(),
output_cpu.numpy(),
atol=dtype_atol[dtype])
np.testing.assert_allclose(state_ref.to(torch.float32).cpu().numpy(),
present_state_cpu.numpy(),
atol=dtype_atol[dtype])