mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-27 22:23:25 +08:00
* TensorRT-LLM Release 0.10.0 --------- Co-authored-by: Loki <lokravi@amazon.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
69 lines
2.4 KiB
Python
69 lines
2.4 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_squeeze(self,
|
|
input_data=[[[-3.0, -2.0, -1.0, 10.0, -25.0]],
|
|
[[0.0, 1.0, 2.0, -2.0, -1.0]]],
|
|
dim=1):
|
|
dtype = 'float32'
|
|
torch_dtype = str_dtype_to_torch(dtype)
|
|
input_data = input_data if isinstance(
|
|
input_data, torch.Tensor) else torch.tensor(input_data)
|
|
input_data = input_data.to(torch_dtype)
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input_t = Tensor(name='input',
|
|
shape=input_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output = tensorrt_llm.functional.squeeze(input_t, dim=dim)
|
|
|
|
output = output.trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'input': input_data.numpy(),
|
|
})
|
|
|
|
ref = torch.squeeze(input_data, dim=dim)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
# print(ref)
|
|
# print(outputs['output'])
|
|
return
|