TensorRT-LLMs/tests/functional/test_squeeze.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

69 lines
2.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
from tensorrt_llm._utils import str_dtype_to_torch
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_squeeze(self,
input_data=[[[-3.0, -2.0, -1.0, 10.0, -25.0]],
[[0.0, 1.0, 2.0, -2.0, -1.0]]],
dim=1):
dtype = 'float32'
torch_dtype = str_dtype_to_torch(dtype)
input_data = input_data if isinstance(
input_data, torch.Tensor) else torch.tensor(input_data)
input_data = input_data.to(torch_dtype)
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input_t = Tensor(name='input',
shape=input_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.squeeze(input_t, dim=dim)
output = output.trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'input': input_data.numpy(),
})
ref = torch.squeeze(input_data, dim=dim)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
# print(ref)
# print(outputs['output'])
return