TensorRT-LLMs/tests/functional/test_where.py
Kaiyu Xie 9bd15f1937
TensorRT-LLM v0.10 update
* TensorRT-LLM Release 0.10.0

---------

Co-authored-by: Loki <lokravi@amazon.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-06-05 20:43:25 +08:00

107 lines
3.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
@parameterized.expand([
(True, ),
(False, ),
])
def test_where_from_bool(self, condition=True):
dtype = 'float32'
t_data = torch.randn(2, 3)
f_data = torch.randn(2, 3)
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
t = Tensor(name='t',
shape=t_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
f = Tensor(name='f',
shape=f_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.where(condition, t, f).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
't': t_data.numpy(),
'f': f_data.numpy(),
})
ref = torch.where(torch.tensor(condition), t_data, f_data)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_where_from_tensor(self):
dtype = 'float32'
t_data = torch.randn(3, 4)
f_data = torch.randn(3, 4)
c_data = torch.randint(2, size=(3, 1), dtype=torch.bool)
ref = torch.where(c_data, t_data, f_data)
print(ref)
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
t = Tensor(name='t',
shape=t_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
f = Tensor(name='f',
shape=f_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
c = Tensor(name='c',
shape=c_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt('bool'))
output = tensorrt_llm.functional.where(c, t, f).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
't': t_data.numpy(),
'f': f_data.numpy(),
'c': c_data.numpy(),
})
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
print(t_data)
print(f_data)
print(c_data)
print(outputs['output'])
# assert False, "FORCED"