mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* TensorRT-LLM Release 0.10.0 --------- Co-authored-by: Loki <lokravi@amazon.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
100 lines
3.8 KiB
Python
100 lines
3.8 KiB
Python
import os
|
|
import sys
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.builder import BuildConfig, build
|
|
from tensorrt_llm.executor import GenerationExecutor, SamplingConfig
|
|
from tensorrt_llm.models import LLaMAForCausalLM
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
from utils.util import force_ampere, skip_no_modelopt, skip_pre_ada
|
|
|
|
tensorrt_llm.logger.set_level('info')
|
|
|
|
|
|
@force_ampere
|
|
@skip_no_modelopt
|
|
def test_int4_awq_quantization():
|
|
input_text = [
|
|
'Born in north-east France, Soyer trained as a',
|
|
"What is large language model?"
|
|
]
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
tokenizer_dir = hf_model_dir
|
|
checkpoint_dir = tempfile.TemporaryDirectory("llama-checkpoint").name
|
|
quant_config = QuantConfig(QuantAlgo.W4A16_AWQ)
|
|
LLaMAForCausalLM.quantize(hf_model_dir,
|
|
checkpoint_dir,
|
|
quant_config=quant_config,
|
|
calib_batches=32,
|
|
calib_batch_size=32)
|
|
llama = LLaMAForCausalLM.from_checkpoint(checkpoint_dir)
|
|
engine = build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl))
|
|
|
|
engine_dir = "llama-awq-quantized"
|
|
engine_temp = tempfile.TemporaryDirectory(engine_dir)
|
|
engine_dir = engine_temp.name
|
|
engine.save(engine_dir)
|
|
with GenerationExecutor.create(Path(engine_dir), tokenizer_dir) as executor:
|
|
for idx, output in enumerate(
|
|
executor.generate(
|
|
input_text,
|
|
sampling_config=SamplingConfig(max_new_tokens=10))):
|
|
print(f"Input: {input_text[idx]}")
|
|
print(f'Output: {output.text}')
|
|
# TODO: TRTLLM-185, check the score when the test infra is ready, hard coded value is not stable, cause flaky tests in L0
|
|
|
|
|
|
@skip_pre_ada
|
|
@skip_no_modelopt
|
|
def test_fp8_quantization():
|
|
input_text = [
|
|
'Born in north-east France, Soyer trained as a',
|
|
"What is large language model?"
|
|
]
|
|
max_batch_size, max_isl, max_osl = 8, 256, 256
|
|
hf_model_dir = llm_models_root() / "llama-models/llama-7b-hf"
|
|
tokenizer_dir = hf_model_dir
|
|
|
|
checkpoint_dir = tempfile.TemporaryDirectory("llama-checkpoint").name
|
|
quant_config = QuantConfig(QuantAlgo.FP8, exclude_modules=["lm_head"])
|
|
LLaMAForCausalLM.quantize(hf_model_dir,
|
|
checkpoint_dir,
|
|
quant_config=quant_config,
|
|
calib_batches=32)
|
|
llama = LLaMAForCausalLM.from_checkpoint(checkpoint_dir)
|
|
|
|
engine = build(
|
|
llama,
|
|
BuildConfig(max_batch_size=max_batch_size,
|
|
max_input_len=max_isl,
|
|
max_output_len=max_osl,
|
|
strongly_typed=True))
|
|
engine_dir = "llama-fp8-quantized"
|
|
engine_temp = tempfile.TemporaryDirectory(engine_dir)
|
|
engine_dir = engine_temp.name
|
|
engine.save(engine_dir)
|
|
with GenerationExecutor.create(Path(engine_dir), tokenizer_dir) as executor:
|
|
for idx, output in enumerate(
|
|
executor.generate(
|
|
input_text,
|
|
sampling_config=SamplingConfig(max_new_tokens=10))):
|
|
print(f"Input: {input_text[idx]}")
|
|
print(f'Output: {output.text}')
|
|
# TODO: TRTLLM-185, check the score when the test infra is ready, hard coded value is not stable, cause flaky tests in L0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_int4_awq_quantization()
|
|
test_fp8_quantization()
|