TensorRT-LLMs/examples/llm-api/llm_logits_processor.py
Yan Chunwei 9bd42ecf9b
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
2025-06-20 03:01:10 +08:00

118 lines
5.2 KiB
Python

### Control generated text using logits processor
from typing import List, Optional
import torch
from tensorrt_llm._tensorrt_engine import LLM
from tensorrt_llm.sampling_params import (BatchedLogitsProcessor,
LogitsProcessor, SamplingParams)
# The recommended way to create a customized logits processor:
# * Subclass LogitsProcessor and implement the processing logics in the __call__ method.
# * Create an instance and pass to SamplingParams.
# Alternatively, you can create any callable with the same signature with the __call__ method.
# This simple callback will output a specific token at each step irrespective of prompt.
# Refer to ../bindings/executor/example_logits_processor.py for a more
# sophisticated callback that generates JSON structured output.
class MyLogitsProcessor(LogitsProcessor):
def __init__(self, allowed_token_id: int):
self.allowed_token_id = allowed_token_id
def __call__(self, req_id: int, logits: torch.Tensor,
token_ids: List[List[int]], stream_ptr: int,
client_id: Optional[int]):
mask = torch.full_like(logits, fill_value=float("-inf"), device="cpu")
mask[:, :, self.allowed_token_id] = 0
stream = None if stream_ptr is None else torch.cuda.ExternalStream(
stream_ptr)
with torch.cuda.stream(stream):
mask = mask.to(logits.device, non_blocking=True)
logits += mask
# The recommended way to create a customized batched logits processor:
# * Subclass BatchedLogitsProcessor and implement the processing logics in the __call__ method.
# * Create an instance and pass to LLM.
# Alternatively, you can create any callable with the same signature with the __call__ method.
# A batched logits processor's arguments for all requests in a batch are made available as lists.
# This helps user optimize the callback for large batch sizes. For example:
# 1. Process more work on host, e.g. running a JSON state machine, in parallel with model forward pass on device.
# 2. Coalesce H2D memory transfers for all requests into a single cudaMemcpyAsync call.
# 3. Launch a single batched kernel, e.g. for updating logits on device.
class MyBatchedLogitsProcessor(BatchedLogitsProcessor):
def __init__(self, allowed_token_id: int):
self.allowed_token_id = allowed_token_id
def __call__(self, req_ids: List[int], logits: List[torch.Tensor],
token_ids: List[List[List[int]]], stream_ptr: int,
client_ids: List[Optional[int]]):
# Generate masks for all requests on host
masks = []
for req_id, req_logits, req_token_ids, client_id in zip(
req_ids, logits, token_ids, client_ids):
mask = torch.full_like(req_logits,
fill_value=float("-inf"),
device="cpu")
mask[:, :, self.allowed_token_id] = 0
masks.append(mask)
# Move masks to device and add to logits using non-blocking operations
with torch.cuda.stream(torch.cuda.ExternalStream(stream_ptr)):
for req_logits, mask in zip(logits, masks):
req_logits += mask.to(req_logits.device, non_blocking=True)
def main():
# Batched logits processor (only supported in TensorRT backend)
# should be specified when initializing LLM.
llm = LLM(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
batched_logits_processor=MyBatchedLogitsProcessor(allowed_token_id=42))
# Sample prompts
prompts = [
"Hello, my name is",
"The president of the United States is",
]
# Generate text
for prompt_id, prompt in enumerate(prompts):
# Use non-batched logits processor callback only for odd-numbered prompts
if prompt_id % 2 == 0:
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
else:
# Each prompt can be specified with a logits processor at runtime
sampling_params = SamplingParams(
temperature=0.8,
top_p=0.95,
logits_processor=MyLogitsProcessor(allowed_token_id=42))
for output in llm.generate([prompt], sampling_params):
print(
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
)
# Got output like
# Prompt: 'Hello, my name is', Generated text: '\n\nJane Smith. I am a student pursuing my degree in Computer Science at [university]. I enjoy learning new things, especially technology and programming'
# Prompt: 'The president of the United States is', Generated text: "''''''''''''''''''''''''''''''''"
# Use batched processor with batch size = 2
sampling_params = SamplingParams(apply_batched_logits_processor=True)
for output in llm.generate(prompts, sampling_params):
print(
f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}"
)
# Got output like
# Prompt: 'Hello, my name is', Generated text: "''''''''''''''''''''''''''''''''"
# Prompt: 'The president of the United States is', Generated text: "''''''''''''''''''''''''''''''''"
if __name__ == '__main__':
main()