TensorRT-LLMs/tensorrt_llm/bench/benchmark/throughput.py
Yan Chunwei 9bd42ecf9b
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
2025-06-20 03:01:10 +08:00

431 lines
15 KiB
Python
Executable File

from __future__ import annotations
import asyncio
import json
from pathlib import Path
import click
from click_option_group import (MutuallyExclusiveOptionGroup, OptionGroup,
optgroup)
from huggingface_hub import snapshot_download
from tensorrt_llm.bench.benchmark.utils.asynchronous import async_benchmark
from tensorrt_llm.bench.benchmark.utils.processes import IterationWriter
from tensorrt_llm.bench.build.build import get_model_config
# isort: off
from tensorrt_llm.bench.benchmark.utils.general import (
get_settings_from_engine, get_settings)
# isort: on
from tensorrt_llm import LLM as PyTorchLLM
from tensorrt_llm._tensorrt_engine import LLM
from tensorrt_llm.bench.benchmark.utils.general import generate_warmup_dataset
from tensorrt_llm.bench.dataclasses.configuration import RuntimeConfig
from tensorrt_llm.bench.dataclasses.general import BenchmarkEnvironment
from tensorrt_llm.bench.dataclasses.reporting import ReportUtility
from tensorrt_llm.bench.utils.data import (create_dataset_from_stream,
initialize_tokenizer,
update_metadata_for_multimodal)
from tensorrt_llm.llmapi import CapacitySchedulerPolicy
from tensorrt_llm.logger import logger
from tensorrt_llm.sampling_params import SamplingParams
@click.command(name="throughput")
@optgroup.group("Engine run configuration.",
help="Runtime settings for executing a TensorRT-LLM engine.")
@optgroup.option(
"--engine_dir",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
help="Path to a serialized TRT-LLM engine.",
)
@optgroup.option("--backend",
type=click.Choice(["pytorch", "_autodeploy"]),
default=None,
help="Set to 'pytorch' for pytorch path. Default is cpp path.")
@optgroup.option(
"--extra_llm_api_options",
type=str,
default=None,
help=
"Path to a YAML file that overwrites the parameters specified by trtllm-bench."
)
@optgroup.option(
"--max_batch_size",
type=int,
help="Maximum runtime batch size to run the engine with.",
)
@optgroup.option(
"--max_num_tokens",
type=int,
help="Maximum runtime tokens that an engine can accept.",
)
@optgroup.option(
"--max_seq_len",
type=int,
default=None,
help="Maximum sequence length.",
)
@optgroup.option(
"--beam_width",
type=int,
default=1,
help="Number of search beams.",
)
@optgroup.option(
"--kv_cache_free_gpu_mem_fraction",
type=float,
default=.90,
help="The percentage of memory to use for KV Cache after model load.",
)
@optgroup.group(
"Engine Input Configuration",
help="Input configuration for driving the engine.",
)
@optgroup.option(
"--dataset",
type=click.Path(exists=True,
readable=True,
path_type=Path,
resolve_path=True),
default=None,
required=False,
help="Pass in a dataset file for parsing instead of stdin.",
)
@optgroup.option(
"--eos_id",
type=int,
default=-1,
required=False,
help=
"Set the end-of-sequence token for the benchmark. Set to -1 to disable EOS.",
)
@optgroup.option(
"--modality",
type=click.Choice(["image", "video"]),
default=None,
help="Modality of the multimodal requests.",
)
@optgroup.option(
"--max_input_len",
type=int,
default=4096,
help=
"Maximum input sequence length to use for multimodal models. This is used only when --modality "
"is specified since the actual number of vision tokens is unknown before the model is run.",
)
@optgroup.option(
"--num_requests",
type=int,
default=0,
help=
"Number of requests to cap benchmark run at. If not specified or set to 0, it will be the "
"length of dataset.",
)
@optgroup.option(
"--warmup",
type=int,
default=2,
help="Number of requests warm up benchmark.",
)
@optgroup.option(
"--target_input_len",
default=None,
type=click.IntRange(min=1),
help="Target (average) input length for tuning heuristics.",
)
@optgroup.option(
"--target_output_len",
default=None,
type=click.IntRange(min=1),
help="Target (average) sequence length for tuning heuristics.",
)
@optgroup.group(
"World Configuration",
help="Options for configuring the backend multi-GPU world.",
)
@optgroup.option(
"--tp",
type=int,
default=1,
help="tensor parallelism size",
)
@optgroup.option(
"--pp",
type=int,
default=1,
help="pipeline parallelism size",
)
@optgroup.option(
"--ep",
type=int,
default=None,
help="expert parallelism size",
)
@optgroup.option(
"--cluster_size",
type=int,
default=None,
help="expert cluster parallelism size",
)
@optgroup.group("Request Load Control Options",
cls=MutuallyExclusiveOptionGroup,
help="Limits how requests are loaded.")
@optgroup.option(
"--concurrency",
type=int,
default=-1,
help=
"Desired concurrency rate (number of requests processing at the same time), <=0 for no concurrency limit.",
)
@click.option(
"--streaming",
is_flag=True,
default=False,
help="Enable streaming mode for requests.",
)
@optgroup.group("Reporting Options",
help="Options for reporting benchmark results.",
cls=OptionGroup)
@optgroup.option(
"--report_json",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where report is written to.",
)
@optgroup.option(
"--iteration_log",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where iteration logging is written to.",
)
@optgroup.option(
"--output_json",
type=click.Path(dir_okay=False,
writable=True,
readable=False,
path_type=Path,
resolve_path=True),
required=False,
help="Path where output should be written to.",
)
@optgroup.option(
"--enable_chunked_context",
is_flag=True,
default=False,
help="Enable chunking in prefill stage for enhanced throughput benchmark.",
)
@optgroup.option(
"--scheduler_policy",
type=click.Choice(["guaranteed_no_evict", "max_utilization"]),
default="guaranteed_no_evict",
help=
"KV cache scheduler policy: guaranteed_no_evict prevents request eviction, max_utilization optimizes for throughput.",
)
@click.pass_obj
def throughput_command(
bench_env: BenchmarkEnvironment,
**params,
) -> None:
"""Run a throughput test on a TRT-LLM engine."""
logger.info("Preparing to run throughput benchmark...")
# Parameters from CLI
# Model, experiment, and engine params
dataset_path: Path = params.pop("dataset")
eos_id: int = params.pop("eos_id")
warmup: int = params.get("warmup")
num_requests: int = params.pop("num_requests")
max_seq_len: int = params.pop("max_seq_len")
model: str = bench_env.model
checkpoint_path: Path = bench_env.checkpoint_path or bench_env.model
engine_dir: Path = params.pop("engine_dir")
concurrency: int = params.pop("concurrency")
backend: str = params.get("backend")
modality: str = params.pop("modality")
max_input_len: int = params.pop("max_input_len")
model_type = get_model_config(model, checkpoint_path).model_type
# Reporting options
report_json: Path = params.pop("report_json")
output_json: Path = params.pop("output_json")
iteration_log: Path = params.pop("iteration_log")
iteration_writer = IterationWriter(iteration_log)
# Runtime kwargs and option tracking.
kwargs = {}
# Initialize the HF tokenizer for the specified model.
tokenizer = initialize_tokenizer(checkpoint_path)
# Dataset Loading and Preparation
with open(dataset_path, "r") as dataset:
metadata, requests = create_dataset_from_stream(
tokenizer,
dataset,
num_requests=num_requests,
model_dir=checkpoint_path,
model_type=model_type,
modality=modality,
max_input_seq_len_for_multimodal=max_input_len)
metadata.dataset_path = dataset_path
params["target_input_len"] = params.get(
"target_input_len") or metadata.avg_isl
params["target_output_len"] = params.get(
"target_output_len") or metadata.avg_osl
if modality is None:
# Log dataset info
# NOTE: This table is only accurate for non-multimodal models.
# The accurate table for multimodal models will be logged after the benchmark is done.
logger.info(metadata.get_summary_for_print())
# Engine configuration parsing
if backend and backend.lower() in ["pytorch", "_autodeploy"]:
# If we're dealing with a model name, perform a snapshot download to
# make sure we have a local copy of the model.
if checkpoint_path is None:
snapshot_download(model)
exec_settings = get_settings(params, metadata, bench_env.model,
bench_env.checkpoint_path)
kwargs_max_sql = max_seq_len or metadata.max_sequence_length
logger.info(f"Setting PyTorch max sequence length to {kwargs_max_sql}")
kwargs["max_seq_len"] = kwargs_max_sql
else:
assert max_seq_len is None, (
"max_seq_len is not a runtime parameter for C++ backend")
exec_settings, build_cfg = get_settings_from_engine(engine_dir)
engine_max_seq_len = build_cfg["max_seq_len"]
# TODO: Verify that the engine can handle the max/min ISL/OSL.
if metadata.max_sequence_length > engine_max_seq_len:
raise RuntimeError(
f"Engine supports a max sequence of {engine_max_seq_len}. "
"Provided dataset contains a maximum sequence of "
f"{metadata.max_sequence_length}. Please rebuild a new engine "
"to support this dataset.")
exec_settings["model"] = model
engine_bs = exec_settings["settings_config"]["max_batch_size"]
engine_tokens = exec_settings["settings_config"]["max_num_tokens"]
# Runtime Options
runtime_max_bs = params.pop("max_batch_size")
runtime_max_tokens = params.pop("max_num_tokens")
runtime_max_bs = runtime_max_bs or engine_bs
runtime_max_tokens = runtime_max_tokens or engine_tokens
kv_cache_percent = params.pop("kv_cache_free_gpu_mem_fraction")
beam_width = params.pop("beam_width")
streaming: bool = params.pop("streaming")
enable_chunked_context: bool = params.pop("enable_chunked_context")
scheduler_policy: str = params.pop("scheduler_policy")
# Update configuration with runtime options
exec_settings["settings_config"]["kv_cache_percent"] = kv_cache_percent
exec_settings["settings_config"]["max_batch_size"] = runtime_max_bs
exec_settings["settings_config"]["max_num_tokens"] = runtime_max_tokens
exec_settings["settings_config"]["beam_width"] = beam_width
exec_settings["settings_config"][
"scheduler_policy"] = CapacitySchedulerPolicy.GUARANTEED_NO_EVICT if scheduler_policy == "guaranteed_no_evict" else CapacitySchedulerPolicy.MAX_UTILIZATION
exec_settings["settings_config"]["chunking"] = enable_chunked_context
# Dynamic runtime features.
exec_settings["settings_config"]["dynamic_max_batch_size"] = True
# LlmArgs
exec_settings["extra_llm_api_options"] = params.pop("extra_llm_api_options")
exec_settings["iteration_log"] = iteration_log
# Construct the runtime configuration dataclass.
runtime_config = RuntimeConfig(**exec_settings)
llm = None
try:
logger.info("Setting up throughput benchmark.")
kwargs = kwargs | runtime_config.get_llm_args()
kwargs['backend'] = backend
if backend == "pytorch" and iteration_log is not None:
kwargs["enable_iter_perf_stats"] = True
if runtime_config.backend == 'pytorch':
if kwargs.pop("extended_runtime_perf_knob_config", None):
logger.warning(
"Ignore extended_runtime_perf_knob_config for pytorch backend."
)
llm = PyTorchLLM(**kwargs)
else:
llm = LLM(**kwargs)
sampling_params = SamplingParams(end_id=eos_id,
pad_id=eos_id,
n=beam_width,
use_beam_search=beam_width > 1)
post_proc_params = None # No detokenization
# Perform warmup if requested.
if warmup > 0:
logger.info("Setting up for warmup...")
warmup_dataset = generate_warmup_dataset(requests, warmup)
logger.info("Running warmup.")
asyncio.run(
async_benchmark(llm,
sampling_params,
post_proc_params,
warmup_dataset,
False,
concurrency,
modality=modality))
# WAR: IterationResult is a singleton tied to the executor.
# Since the benchmark calls asyncio.run() multiple times (e.g., during warmup),
# we must reset it to ensure it attaches to the correct event loop.
llm._executor._iter_stats_result = None
logger.info("Warmup done.")
with iteration_writer.capture():
statistics = asyncio.run(
async_benchmark(llm,
sampling_params,
post_proc_params,
requests,
streaming,
concurrency,
iteration_writer.full_address,
modality=modality))
logger.info(f"Benchmark done. Reporting results...")
if modality is not None:
# For multimodal models, we need to update the metadata with the correct input lengths
metadata = update_metadata_for_multimodal(metadata, statistics)
report_utility = ReportUtility(statistics, metadata, runtime_config,
logger, kwargs, streaming)
if report_json:
logger.info(f"Writing report to '{report_json}'.")
with open(report_json, "w") as f:
f.write(
json.dumps(report_utility.get_statistics_dict(), indent=4))
if output_json:
logger.info(f"Writing output to {output_json}.")
with open(output_json, "w") as f:
output_token_info = report_utility.get_output_tokens(tokenizer)
f.write(json.dumps(output_token_info, indent=4))
report_utility.report_statistics()
except KeyboardInterrupt:
logger.info("Keyboard interrupt, exiting benchmark...")
finally:
if llm is not None:
llm.shutdown()