mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
288 lines
11 KiB
Python
288 lines
11 KiB
Python
# I want to create accuracy tests for disaggregated serving.
|
|
# I need to to this by creating a new class that mimics LLM class. Instead of implementing the
|
|
# actual methods it will send OAI requests to the disaggregated serving endpoint.
|
|
# Please take a look at the existing test_llm_api_pytorch.py file for reference.
|
|
import concurrent
|
|
import contextlib
|
|
import os
|
|
import tempfile
|
|
import time
|
|
from collections import namedtuple
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import openai
|
|
import pytest
|
|
import requests
|
|
import yaml
|
|
|
|
from tensorrt_llm.executor.result import GenerationResultBase
|
|
from tensorrt_llm.llmapi import CompletionOutput, RequestOutput, SamplingParams
|
|
from tensorrt_llm.llmapi.llm_args import LlmArgs
|
|
|
|
from ..conftest import llm_models_root, parametrize_with_ids, skip_pre_hopper
|
|
from ..trt_test_alternative import popen
|
|
from .accuracy_core import GSM8K, MMLU, LlmapiAccuracyTestHarness
|
|
|
|
|
|
class Result(GenerationResultBase):
|
|
|
|
def __init__(self, id: int, sampling_params: SamplingParams,
|
|
outputs: List[CompletionOutput]):
|
|
super().__init__(id, sampling_params)
|
|
self._outputs = outputs
|
|
self._streaming = False
|
|
|
|
@property
|
|
def outputs(self) -> List[CompletionOutput]:
|
|
return self._outputs
|
|
|
|
def result(self):
|
|
return self
|
|
|
|
|
|
DuckLLM = namedtuple('DuckLLM', ['args', 'generate_async'])
|
|
|
|
|
|
class MyThreadPoolExecutor(ThreadPoolExecutor):
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
self.futures: list[concurrent.futures.Future[RequestOutput]] = []
|
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
if exc_type is None:
|
|
for future in self.futures:
|
|
future.result()
|
|
return super().__exit__(exc_type, exc_val, exc_tb)
|
|
|
|
for future in self.futures:
|
|
future.cancel()
|
|
self.shutdown(wait=True, cancel_futures=True)
|
|
return False
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def launch_disaggregated_llm(disaggregated_server_config: Dict[str, Any],
|
|
ctx_server_config: Dict[str, Any],
|
|
gen_server_config: Dict[str, Any],
|
|
model_name: str,
|
|
tensor_parallel_size: int = 1):
|
|
temp_dir = tempfile.TemporaryDirectory()
|
|
disaggregated_serving_config_path = os.path.join(
|
|
temp_dir.name, "disaggregated_serving_config.yaml")
|
|
with open(disaggregated_serving_config_path, "w") as f:
|
|
yaml.dump(disaggregated_server_config, f)
|
|
ctx_server_config_path = os.path.join(temp_dir.name,
|
|
"ctx_server_config.yaml")
|
|
with open(ctx_server_config_path, "w") as f:
|
|
yaml.dump(ctx_server_config, f)
|
|
gen_server_config_path = os.path.join(temp_dir.name,
|
|
"gen_server_config.yaml")
|
|
with open(gen_server_config_path, "w") as f:
|
|
yaml.dump(gen_server_config, f)
|
|
|
|
args = LlmArgs.from_kwargs(model=model_name,
|
|
tensor_parallel_size=tensor_parallel_size)
|
|
|
|
trtllm_serve_path = "trtllm-serve"
|
|
# Common arguments for both servers
|
|
common_args = [
|
|
trtllm_serve_path, model_name, "--host", "localhost", "--backend",
|
|
"pytorch"
|
|
]
|
|
if tensor_parallel_size > 1:
|
|
common_args.append(f"--tp_size={tensor_parallel_size}")
|
|
|
|
env_ctx = os.environ.copy()
|
|
env_ctx["TRTLLM_USE_UCX_KVCACHE"] = "1"
|
|
env_ctx["CUDA_VISIBLE_DEVICES"] = ",".join(
|
|
map(str, range(tensor_parallel_size)))
|
|
|
|
env_gen = os.environ.copy()
|
|
env_gen["TRTLLM_USE_UCX_KVCACHE"] = "1"
|
|
env_gen["CUDA_VISIBLE_DEVICES"] = ",".join(
|
|
map(str, range(tensor_parallel_size, 2 * tensor_parallel_size)))
|
|
|
|
with (MyThreadPoolExecutor(max_workers=16) as thread_pool, temp_dir,
|
|
popen(common_args + [
|
|
"--port", "8001", "--extra_llm_api_options",
|
|
ctx_server_config_path
|
|
],
|
|
env=env_ctx) as ctx_server,
|
|
popen(common_args + [
|
|
"--port", "8002", "--extra_llm_api_options",
|
|
gen_server_config_path
|
|
],
|
|
env=env_gen) as gen_server,
|
|
popen([
|
|
trtllm_serve_path, "disaggregated", "-c",
|
|
disaggregated_serving_config_path, "--server_start_timeout",
|
|
"3600"
|
|
]) as disaggregated_server):
|
|
while True:
|
|
time.sleep(1)
|
|
try:
|
|
print("Checking health endpoint")
|
|
response = requests.get("http://localhost:8000/health")
|
|
if response.status_code == 200:
|
|
break
|
|
except requests.exceptions.ConnectionError:
|
|
continue
|
|
|
|
client = openai.OpenAI(api_key="1234567890",
|
|
base_url=f"http://localhost:8000/v1")
|
|
|
|
def send_request(prompt: str, sampling_params: SamplingParams):
|
|
response = client.completions.create(
|
|
model=model_name,
|
|
prompt=prompt,
|
|
stream=False,
|
|
**({
|
|
"max_tokens": sampling_params.max_tokens,
|
|
"temperature": sampling_params.temperature,
|
|
"top_p": sampling_params.top_p,
|
|
"stop": sampling_params.stop,
|
|
"seed": sampling_params.seed
|
|
} if sampling_params else {}))
|
|
result = Result(id=0,
|
|
sampling_params=sampling_params,
|
|
outputs=[
|
|
CompletionOutput(text=response.choices[0].text,
|
|
index=0)
|
|
])
|
|
requested_output = RequestOutput._from_generation_result(
|
|
result, prompt=prompt)
|
|
setattr(requested_output, "result", result.result)
|
|
return requested_output
|
|
|
|
def generate_async(prompt: str,
|
|
sampling_params: Optional[SamplingParams] = None):
|
|
future = thread_pool.submit(send_request, prompt, sampling_params)
|
|
thread_pool.futures.append(future)
|
|
return future
|
|
|
|
try:
|
|
yield DuckLLM(args, generate_async)
|
|
finally:
|
|
ctx_server.terminate()
|
|
gen_server.terminate()
|
|
disaggregated_server.terminate()
|
|
|
|
ctx_server.wait()
|
|
gen_server.wait()
|
|
disaggregated_server.wait()
|
|
|
|
|
|
@pytest.mark.timeout(3600)
|
|
class TestLlama3_1_8BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/llama-3.1-model/Llama-3.1-8B-Instruct"
|
|
|
|
@pytest.mark.skip_less_device_memory(32000)
|
|
@pytest.mark.skip_device_not_contain(["H100", "H200"])
|
|
@pytest.mark.parametrize("disable_overlap_scheduler", [False, True])
|
|
def test_auto_dtype(self, disable_overlap_scheduler):
|
|
ctx_server_config = {"disable_overlap_scheduler": True}
|
|
gen_server_config = {
|
|
"disable_overlap_scheduler": disable_overlap_scheduler
|
|
}
|
|
disaggregated_server_config = {
|
|
"hostname": "localhost",
|
|
"port": 8000,
|
|
"backend": "pytorch",
|
|
"context_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8001"]
|
|
},
|
|
"generation_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8002"]
|
|
}
|
|
}
|
|
with launch_disaggregated_llm(disaggregated_server_config,
|
|
ctx_server_config, gen_server_config,
|
|
self.MODEL_PATH) as llm:
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = GSM8K(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
@pytest.mark.timeout(3600)
|
|
@pytest.mark.skip_less_device_memory(140000)
|
|
class TestLlama4ScoutInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/llama4-models/Llama-4-Scout-17B-16E-Instruct"
|
|
|
|
@pytest.mark.parametrize("overlap_scheduler", [False, True])
|
|
def test_auto_dtype(self, overlap_scheduler):
|
|
ctx_server_config = {"disable_overlap_scheduler": True}
|
|
gen_server_config = {"disable_overlap_scheduler": overlap_scheduler}
|
|
disaggregated_server_config = {
|
|
"hostname": "localhost",
|
|
"port": 8000,
|
|
"backend": "pytorch",
|
|
"context_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8001"]
|
|
},
|
|
"generation_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8002"]
|
|
}
|
|
}
|
|
with launch_disaggregated_llm(disaggregated_server_config,
|
|
ctx_server_config,
|
|
gen_server_config,
|
|
self.MODEL_PATH,
|
|
tensor_parallel_size=4) as llm:
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = GSM8K(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
@pytest.mark.timeout(3600)
|
|
class TestDeepSeekV3Lite(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "deepseek-ai/DeepSeek-V3-Lite"
|
|
MODEL_PATH = f"{llm_models_root()}/DeepSeek-V3-Lite/bf16"
|
|
|
|
@parametrize_with_ids("overlap_scheduler", [True, False])
|
|
@parametrize_with_ids("mtp_nextn",
|
|
[0, pytest.param(2, marks=skip_pre_hopper)])
|
|
def test_auto_dtype(self, overlap_scheduler, mtp_nextn):
|
|
ctx_server_config = {"disable_overlap_scheduler": True}
|
|
gen_server_config = {"disable_overlap_scheduler": not overlap_scheduler}
|
|
if mtp_nextn > 0:
|
|
ctx_server_config["speculative_config"] = {
|
|
"decoding_type": "MTP",
|
|
"num_nextn_predict_layers": mtp_nextn
|
|
}
|
|
gen_server_config["speculative_config"] = {
|
|
"decoding_type": "MTP",
|
|
"num_nextn_predict_layers": mtp_nextn
|
|
}
|
|
disaggregated_server_config = {
|
|
"hostname": "localhost",
|
|
"port": 8000,
|
|
"backend": "pytorch",
|
|
"context_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8001"]
|
|
},
|
|
"generation_servers": {
|
|
"num_instances": 1,
|
|
"urls": ["localhost:8002"]
|
|
}
|
|
}
|
|
with launch_disaggregated_llm(disaggregated_server_config,
|
|
ctx_server_config,
|
|
gen_server_config,
|
|
self.MODEL_PATH,
|
|
tensor_parallel_size=4) as llm:
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = GSM8K(self.MODEL_NAME)
|
|
task.evaluate(llm)
|