mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
432 lines
16 KiB
Python
432 lines
16 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytest
|
|
|
|
from tensorrt_llm._tensorrt_engine import LLM
|
|
from tensorrt_llm.llmapi import EagleDecodingConfig, KvCacheConfig
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
from ..conftest import llm_models_root, skip_post_blackwell, skip_pre_ada
|
|
from .accuracy_core import (GSM8K, MMLU, CnnDailymail, JsonModeEval,
|
|
LlmapiAccuracyTestHarness)
|
|
|
|
|
|
class TestLlama3_1_8B(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-3.1-8B"
|
|
MODEL_PATH = f"{llm_models_root()}/llama-3.1-model/Meta-Llama-3.1-8B"
|
|
|
|
@skip_pre_ada
|
|
@skip_post_blackwell
|
|
def test_fp8_rowwise(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8_PER_CHANNEL_PER_TOKEN)
|
|
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestLlama3_1_8BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-3.1-8B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/llama-3.1-model/Llama-3.1-8B-Instruct"
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_cp2(self):
|
|
with LLM(self.MODEL_PATH, context_parallel_size=2) as llm:
|
|
task = GSM8K(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
def test_tp2cp2(self):
|
|
with LLM(self.MODEL_PATH,
|
|
tensor_parallel_size=2,
|
|
context_parallel_size=2) as llm:
|
|
task = GSM8K(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
def test_guided_decoding(self):
|
|
llm = LLM(self.MODEL_PATH, guided_decoding_backend="xgrammar")
|
|
with llm:
|
|
task = JsonModeEval(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
def test_guided_decoding_4gpus(self):
|
|
llm = LLM(self.MODEL_PATH,
|
|
guided_decoding_backend="xgrammar",
|
|
tensor_parallel_size=2,
|
|
pipeline_parallel_size=2)
|
|
with llm:
|
|
task = JsonModeEval(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestLlama3_2_1B(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "meta-llama/Llama-3.2-1B"
|
|
MODEL_PATH = f"{llm_models_root()}/llama-3.2-models/Llama-3.2-1B"
|
|
EXAMPLE_FOLDER = "models/core/llama"
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_smooth_quant(self):
|
|
quant_config = QuantConfig(
|
|
QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_smooth_quant_ootb(self):
|
|
quant_config = QuantConfig(QuantAlgo.W8A8_SQ_PER_CHANNEL)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_int4_awq(self):
|
|
quant_config = QuantConfig(QuantAlgo.W4A16_AWQ)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_int4_awq_int8_kv_cache(self):
|
|
quant_config = QuantConfig(QuantAlgo.W4A16_AWQ)
|
|
kv_cache_config = KvCacheConfig(quant_algo=QuantAlgo.INT8)
|
|
with LLM(self.MODEL_PATH,
|
|
quant_config=quant_config,
|
|
kv_cache_config=kv_cache_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
kv_cache_config = KvCacheConfig(quant_algo=QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH,
|
|
quant_config=quant_config,
|
|
kv_cache_config=kv_cache_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_fp8_pp2(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
kv_cache_config = KvCacheConfig(quant_algo=QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH,
|
|
pipeline_parallel_size=2,
|
|
quant_config=quant_config,
|
|
kv_cache_config=kv_cache_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
@skip_post_blackwell
|
|
def test_fp8_rowwise(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8_PER_CHANNEL_PER_TOKEN)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMistral7B_0_3(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.3"
|
|
MODEL_PATH = f"{llm_models_root()}/Mistral-7B-Instruct-v0.3"
|
|
|
|
@skip_post_blackwell
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.parametrize("quant", ['int4', 'int4_awq', 'int8_awq'])
|
|
def test_quant_tp4(self, quant):
|
|
if quant == 'int4':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16)
|
|
elif quant == 'int4_awq':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ)
|
|
elif quant == 'int8_awq':
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A8_AWQ)
|
|
|
|
with LLM(self.MODEL_PATH,
|
|
tensor_parallel_size=4,
|
|
quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMistral_Nemo_12B_Base(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "mistralai/Mistral-Nemo-Base-2407"
|
|
MODEL_PATH = f"{llm_models_root()}/Mistral-Nemo-Base-2407"
|
|
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.FP8,
|
|
kv_cache_quant_algo=QuantAlgo.FP8)
|
|
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMistral_NeMo_Minitron_8B_Instruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "nvidia/Mistral-NeMo-Minitron-8B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Mistral-NeMo-Minitron-8B-Instruct"
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.FP8)
|
|
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMixtral8x7B(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "mistralai/Mixtral-8x7B-v0.1"
|
|
MODEL_PATH = f"{llm_models_root()}/Mixtral-8x7B-v0.1"
|
|
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_tp2(self):
|
|
with LLM(self.MODEL_PATH, tensor_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
@pytest.mark.skip_less_device(4)
|
|
def test_smooth_quant_tp2pp2(self):
|
|
quant_config = QuantConfig(
|
|
quant_algo=QuantAlgo.W8A8_SQ_PER_CHANNEL_PER_TOKEN_PLUGIN)
|
|
with LLM(self.MODEL_PATH,
|
|
quant_config=quant_config,
|
|
tensor_parallel_size=2,
|
|
pipeline_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestMixtral8x7BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
|
MODEL_PATH = f"{llm_models_root()}/Mixtral-8x7B-Instruct-v0.1"
|
|
|
|
@skip_post_blackwell
|
|
def test_awq_tp2(self):
|
|
quant_config = QuantConfig(quant_algo=QuantAlgo.W4A16_AWQ)
|
|
with LLM(self.MODEL_PATH,
|
|
quant_config=quant_config,
|
|
tensor_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_7BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2-7B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2-7B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_post_blackwell
|
|
def test_weight_only(self):
|
|
quant_config = QuantConfig(QuantAlgo.W8A16)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@pytest.mark.skip_less_device(2)
|
|
def test_tp2(self):
|
|
with LLM(self.MODEL_PATH, tensor_parallel_size=2) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
|
|
class TestQwen2_5_0_5BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-0.5B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_5_1_5BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-1.5B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_post_blackwell
|
|
def test_weight_only(self):
|
|
quant_config = QuantConfig(QuantAlgo.W8A16)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestQwen2_5_7BInstruct(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
|
|
MODEL_PATH = f"{llm_models_root()}/Qwen2.5-7B-Instruct"
|
|
EXTRA_EVALUATOR_KWARGS = dict(
|
|
apply_chat_template=True,
|
|
system_prompt=
|
|
"You are a helpful assistant, please summarize the article entered by the user with one or two sentences."
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(self.MODEL_PATH) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@skip_pre_ada
|
|
def test_fp8(self):
|
|
quant_config = QuantConfig(QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
@pytest.mark.skip(reason="https://nvbugs/5280461")
|
|
@skip_pre_ada
|
|
def test_fp8_kvcache(self):
|
|
"RCCA: https://nvbugs/5065080"
|
|
quant_config = QuantConfig(QuantAlgo.FP8,
|
|
kv_cache_quant_algo=QuantAlgo.FP8)
|
|
with LLM(self.MODEL_PATH, quant_config=quant_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm,
|
|
extra_evaluator_kwargs=self.EXTRA_EVALUATOR_KWARGS)
|
|
task = MMLU(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestEagleVicuna_7B_v1_3(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "lmsys/vicuna-7b-v1.3"
|
|
MODEL_PATH = f"{llm_models_root()}/vicuna-7b-v1.3"
|
|
|
|
speculative_config = EagleDecodingConfig(
|
|
max_draft_len=63,
|
|
speculative_model=f"{llm_models_root()}/EAGLE-Vicuna-7B-v1.3",
|
|
num_eagle_layers=4,
|
|
max_non_leaves_per_layer=10,
|
|
eagle_choices=[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], \
|
|
[0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], \
|
|
[0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], \
|
|
[0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], \
|
|
[6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], \
|
|
[0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]
|
|
)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(
|
|
self.MODEL_PATH,
|
|
max_batch_size=8, # Spec-dec use case less than bs=8
|
|
speculative_config=self.speculative_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|
|
|
|
|
|
class TestEagle2Vicuna_7B_v1_3(LlmapiAccuracyTestHarness):
|
|
MODEL_NAME = "lmsys/vicuna-7b-v1.3"
|
|
MODEL_PATH = f"{llm_models_root()}/vicuna-7b-v1.3"
|
|
|
|
speculative_config = EagleDecodingConfig(
|
|
max_draft_len=63,
|
|
speculative_model=f"{llm_models_root()}/EAGLE-Vicuna-7B-v1.3",
|
|
num_eagle_layers=4,
|
|
max_non_leaves_per_layer=10,
|
|
use_dynamic_tree=True,
|
|
dynamic_tree_max_topK=10)
|
|
|
|
def test_auto_dtype(self):
|
|
with LLM(
|
|
self.MODEL_PATH,
|
|
max_batch_size=8, # Spec-dec use case less than bs=8
|
|
speculative_config=self.speculative_config) as llm:
|
|
task = CnnDailymail(self.MODEL_NAME)
|
|
task.evaluate(llm)
|