mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
105 lines
3.3 KiB
Python
105 lines
3.3 KiB
Python
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tensorrt_llm import LLM, SamplingParams
|
|
from tensorrt_llm.llmapi import EagleDecodingConfig, KvCacheConfig
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.llm_data import llm_models_root
|
|
|
|
|
|
@pytest.mark.parametrize("use_cuda_graph,attn_backend",
|
|
[[True, "TRTLLM"], [False, "TRTLLM"],
|
|
[True, "FLASHINFER"], [False, "FLASHINFER"]])
|
|
def test_llama_eagle3(use_cuda_graph: bool, attn_backend: str):
|
|
total_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9
|
|
if total_mem_gb < 35:
|
|
pytest.skip("Not enough memory to load target + draft model")
|
|
|
|
models_path = llm_models_root()
|
|
|
|
pytorch_config = dict(
|
|
disable_overlap_scheduler=True,
|
|
use_cuda_graph=use_cuda_graph,
|
|
# Only create a single CUDA graph to prevent OOM in CI
|
|
attn_backend=attn_backend,
|
|
cuda_graph_batch_sizes=[1],
|
|
)
|
|
|
|
kv_cache_config = KvCacheConfig(enable_block_reuse=False, )
|
|
|
|
eagle_model_dir = f"{models_path}/EAGLE3-LLaMA3.1-Instruct-8B"
|
|
target_model_dir = f"{models_path}/llama-3.1-model/Llama-3.1-8B-Instruct"
|
|
|
|
draft_len = 4
|
|
spec_config = EagleDecodingConfig(
|
|
max_draft_len=draft_len,
|
|
pytorch_weights_path=eagle_model_dir,
|
|
# Llama 3 does not support one model eagle.
|
|
eagle3_one_model=False)
|
|
|
|
llm_spec = LLM(
|
|
model=target_model_dir,
|
|
**pytorch_config,
|
|
# This max_seq_len is larger than the one specified
|
|
# in the llama 3 8B eagle's config. We want to make sure
|
|
# that the draft model won't go above its max in warmup
|
|
# in this test.
|
|
max_seq_len=8192,
|
|
kv_cache_config=kv_cache_config,
|
|
speculative_config=spec_config)
|
|
|
|
sampling_params = SamplingParams(
|
|
max_tokens=32,
|
|
temperature=0,
|
|
)
|
|
|
|
# First make sure the acceptance rate is reasonable.
|
|
tok_ids = llm_spec.tokenizer.encode("The future of AI is")
|
|
num_tokens = 0
|
|
|
|
num_drafted = 0
|
|
num_accepted = 0
|
|
|
|
for output in llm_spec.generate_async(tok_ids,
|
|
SamplingParams(max_tokens=128,
|
|
temperature=0),
|
|
streaming=True):
|
|
beam = output.outputs[0]
|
|
new_tokens = beam.token_ids
|
|
|
|
num_drafted += draft_len
|
|
num_accepted += len(new_tokens) - num_tokens - 1
|
|
|
|
num_tokens = len(new_tokens)
|
|
|
|
accept_rate = num_accepted / num_drafted
|
|
assert accept_rate > 0.15
|
|
|
|
prompts = [
|
|
"The capital of France is", "The president of the United States is"
|
|
]
|
|
results_spec = llm_spec.generate(prompts, sampling_params)
|
|
generated_text_spec = [result.outputs[0].text for result in results_spec]
|
|
llm_spec.shutdown()
|
|
|
|
llm_ref = LLM(model=target_model_dir,
|
|
**pytorch_config,
|
|
kv_cache_config=kv_cache_config)
|
|
|
|
results_ref = llm_ref.generate(prompts, sampling_params)
|
|
generated_text_ref = [result.outputs[0].text for result in results_ref]
|
|
llm_ref.shutdown()
|
|
|
|
for text_spec, text_ref in zip(generated_text_spec, generated_text_ref):
|
|
# The spec decode algorithm currently guarantees identical results
|
|
assert text_spec == text_ref
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|