TensorRT-LLMs/tests/unittest/llmapi/test_llm_kv_cache_events.py
Yan Chunwei 9bd42ecf9b
[TRTLLM-5208][BREAKING CHANGE] chore: make pytorch LLM the default (#5312)
Signed-off-by: Superjomn <328693+Superjomn@users.noreply.github.com>
2025-06-20 03:01:10 +08:00

207 lines
7.1 KiB
Python

import asyncio
import time
import tensorrt_llm
from tensorrt_llm._tensorrt_engine import LLM
from tensorrt_llm._torch.pyexecutor.llm_request import LlmRequest
from tensorrt_llm._torch.pyexecutor.resource_manager import KVCacheManager
from tensorrt_llm._utils import KVCacheEventSerializer
from tensorrt_llm.llmapi import KvCacheConfig
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.sampling_params import SamplingParams
from .test_llm import get_model_path
default_model_name = "llama-models-v2/TinyLlama-1.1B-Chat-v1.0"
llama_model_path = get_model_path(default_model_name)
global_kvcache_config = KvCacheConfig(free_gpu_memory_fraction=0.4,
event_buffer_max_size=1024,
enable_block_reuse=True,
onboard_blocks=True,
max_tokens=256)
def create_kv_cache_manager():
num_layers = 2
num_kv_heads = 2
head_dim = 128
tokens_per_block = 64
max_seq_len = 1024
max_batch_size = 1
mapping = Mapping()
return KVCacheManager(
kv_cache_config=global_kvcache_config,
kv_cache_type=tensorrt_llm.bindings.internal.batch_manager.CacheType.
SELF,
num_layers=num_layers,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
tokens_per_block=tokens_per_block,
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
mapping=mapping,
)
def create_llm(tensor_parallel_size=1):
return LLM(model=llama_model_path,
tensor_parallel_size=tensor_parallel_size,
kv_cache_config=global_kvcache_config,
autotuner_enabled=False,
backend="pytorch")
def create_llm_request(id, input_tokens, new_tokens=1):
sampling_params = SamplingParams()
req = LlmRequest(request_id=id,
max_new_tokens=new_tokens,
input_tokens=input_tokens,
sampling_config=tensorrt_llm.bindings.SamplingConfig(
sampling_params._get_sampling_config()),
is_streaming=False)
return req
def flush_events(kv_cache_manager):
kv_cache_manager.flush_iteration_events()
time.sleep(0.001)
def test_kv_cache_event_data_serialization():
kv_cache_manager = create_kv_cache_manager()
flush_events(kv_cache_manager)
events = kv_cache_manager.get_latest_events(10)
serialized_event = KVCacheEventSerializer.serialize(events)
assert len(serialized_event) == 1 and serialized_event[0]["event_id"] == 0
assert serialized_event[0]["data"]["type"] == "created"
assert len(serialized_event[0]["data"]["num_blocks_per_cache_level"]) == 2
req = create_llm_request(0, [1, 2, 3, 4, 5])
kv_cache_manager.impl.add_sequence(req.py_request_id, req.prompt_len, 1,
req)
kv_cache_manager.free_resources(req)
flush_events(kv_cache_manager)
events = kv_cache_manager.get_latest_events(10)
serialized_event = KVCacheEventSerializer.serialize(events)
assert serialized_event[0]["data"]["type"] == "stored"
assert serialized_event[0]["data"]["parent_hash"] is None
assert len(serialized_event[0]["data"]["blocks"]) == 1
assert len(serialized_event[0]["data"]["blocks"][0]["tokens"]) == 4
req2 = create_llm_request(1, [1, 2, 3, 4, 5])
kv_cache_manager.impl.add_sequence(req2.py_request_id, req2.prompt_len, 1,
req2)
kv_cache_manager.free_resources(req2)
flush_events(kv_cache_manager)
events = kv_cache_manager.get_latest_events(10)
serialized_event = KVCacheEventSerializer.serialize(events)
def test_expected_kv_cache_events():
llm = create_llm()
sampling_params = SamplingParams(max_tokens=6, temperature=0.01)
prompt = "Hello, my name is"
_ = llm.generate(prompt, sampling_params=sampling_params)
events = llm.get_kv_cache_events(5)
# created + stored events
assert events and len(events) >= 2
for event in events:
if event:
if event["event_id"] == 0:
assert event["data"]["type"] == "created"
elif event["event_id"] == 1:
assert event["data"]["type"] == "stored"
def test_kv_cache_event_async_api():
llm = create_llm()
sampling_params = SamplingParams(max_tokens=6, temperature=0.01)
prompt = "Hello, my name is"
async def generate():
async for output in llm.generate_async(prompt,
streaming=True,
sampling_params=sampling_params):
pass
events = []
async def get_events():
async for event in llm.get_kv_cache_events_async():
events.append(event)
assert events
async def main():
await generate()
await asyncio.gather(generate(), get_events())
await asyncio.gather(generate(), get_events())
asyncio.run(main())
def test_llm_kv_events_api():
llm = create_llm()
sampling_params = SamplingParams(max_tokens=6, temperature=0.01)
requests = []
for i in range(3):
input_tokens = list(range(127 + i))[i:]
requests.append(input_tokens)
_ = llm.generate(requests[0], sampling_params=sampling_params)
events1 = llm.get_kv_cache_events(5)
# Should have 1 stored event and 1 created event
event = events1.pop(0) # created event
while events1:
event = events1.pop(0)
if event:
assert event["event_id"] == 1
assert event["data"]["type"] == "stored"
assert len(event["data"]["blocks"]) == 5
_ = llm.generate(requests[1], sampling_params=sampling_params)
events2 = llm.get_kv_cache_events(5)
while events2:
event = events2.pop(0)
if event:
if event["event_id"] == 2:
# 2 removed events needed
# should be a removed event to make space for context block
assert event["data"]["type"] == "removed"
assert event["data"]["block_hashes"]
elif event["event_id"] == 3:
assert event["data"]["type"] == "removed"
assert event["data"]["block_hashes"]
# stored event for 2nd request
elif event["event_id"] == 4:
assert event["data"]["type"] == "stored"
assert len(event["data"]["blocks"]) == 5
_ = llm.generate(requests[2], sampling_params=sampling_params)
events3 = llm.get_kv_cache_events(5)
while events3:
event = events3.pop(0)
if event:
if event["event_id"] == 5:
assert event["data"]["type"] == "removed"
assert event["data"]["block_hashes"]
elif event["event_id"] == 6:
assert event["data"]["type"] == "removed"
assert event["data"]["block_hashes"]
elif event["event_id"] == 7:
assert event["data"]["type"] == "stored"
assert len(event["data"]["blocks"]) == 5
# no more events after request is finished
assert not llm.get_kv_cache_events(5)