mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* disable overlap in encoder Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * feat: invokeGatherBatch Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * feat: overlap same batch Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * chore: add enableTrtOverlap to ExecutorConfig Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * disable overlap for beam search and spec decode Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * skip overlap tests with beam search or speculative decoding Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * moveFinishedContextRequestsToGeneration and skip unfinished requests in updateRequests Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * enable overlap in GptChunkedLongContextTests Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * feat: Enable overlap in gptManagerBenchmark Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * feat: Improve early exit Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * refactor: Use OptionalRef for newOutputTokens tensor Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * feat: Add overlap scheduling support to TRTLLMDecoder - Updated TRTLLMDecoder to accept an `enable_overlap_scheduler` parameter. - Modified the decoder's internal logic to utilize the overlap scheduling feature. - Adjusted the sequence lengths handling to ensure compatibility with the new scheduling approach. - Enhanced unit tests to include cases for the overlap scheduler with the TRTLLMDecoder. Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> * fix: allNewTokens in PP Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com> --------- Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
118 lines
4.6 KiB
C++
118 lines
4.6 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/batch_manager/common.h"
|
|
#include "tensorrt_llm/batch_manager/kvCacheManager.h"
|
|
#include "tensorrt_llm/batch_manager/peftCacheManager.h"
|
|
#include "tensorrt_llm/batch_manager/runtimeBuffers.h"
|
|
#include "tensorrt_llm/batch_manager/sequenceSlotManager.h"
|
|
#include "tensorrt_llm/common/optionalRef.h"
|
|
#include "tensorrt_llm/runtime/iTensor.h"
|
|
|
|
namespace tensorrt_llm::batch_manager::utils
|
|
{
|
|
using SizeType32 = runtime::SizeType32;
|
|
using TensorPtr = runtime::ITensor::SharedPtr;
|
|
|
|
template <typename T>
|
|
using OptionalRef = common::OptionalRef<T>;
|
|
|
|
TensorPtr collectRequestIds(RequestVector const& contextRequests, RequestVector const& generationRequests);
|
|
|
|
void sortByLoraId(ScheduledRequests& scheduledRequests);
|
|
|
|
//! @brief Move finished context requests to generation requests.
|
|
//! @details This function assumes that the context requests are sorted so that requests with isLastContextChunk() are
|
|
//! at the end of the context requests vector. These requests are moved to the beginning of the generation
|
|
//! requests vector. This means that the order of the requests in context+generation requests is not changed.
|
|
//! @param scheduledRequests The scheduled context and generation requests.
|
|
void moveFinishedContextRequestsToGeneration(ScheduledRequests& scheduledRequests);
|
|
|
|
//! @param beforeDecoder Whether the function is called before the decoder. If it is true, correct the output offset.
|
|
//! @param numDroppedTokens The number of dropped tokens for each beam (e.g. when the requests finished early).
|
|
//! Generation logits for dropped tokens are ignored.
|
|
void copyGenerationLogits(RuntimeBuffers::GenerationLogitsCache& generationLogitsCache,
|
|
runtime::BufferManager const& bufferManager, LlmRequest& llmReq, bool beforeDecoder,
|
|
std::vector<SizeType32> const& numDroppedTokens = {});
|
|
|
|
void copyAdditionalOutputs(std::vector<executor::AdditionalModelOutput> const& additionalModelOutputs,
|
|
RequestVector const& contextRequests, RequestVector const& generationRequests,
|
|
RuntimeBuffers::TensorMap const& outputMap, runtime::BufferManager const& manager);
|
|
|
|
void terminateRequest(SequenceSlotManager& seqSlotManager, LlmRequest& llmRequest, SizeType32 maxInputLen,
|
|
OptionalRef<kv_cache_manager::BaseKVCacheManager> kvCacheManager = std::nullopt,
|
|
OptionalRef<kv_cache_manager::BaseKVCacheManager> crossKvCacheManager = std::nullopt,
|
|
OptionalRef<BasePeftCacheManager> peftCacheManager = std::nullopt, bool pause = false);
|
|
|
|
class CudaGraphExecutor
|
|
{
|
|
public:
|
|
CudaGraphExecutor() = default;
|
|
|
|
~CudaGraphExecutor()
|
|
{
|
|
try
|
|
{
|
|
clear();
|
|
}
|
|
catch (std::exception& e)
|
|
{
|
|
TLLM_LOG_EXCEPTION(e);
|
|
}
|
|
}
|
|
|
|
bool hasInstance() const
|
|
{
|
|
return mInstance != nullptr;
|
|
}
|
|
|
|
void clear();
|
|
void prepareNextGraph(std::shared_ptr<runtime::TllmRuntime>& runtime, SizeType32 nextContextId);
|
|
void launch(runtime::CudaStream const& stream);
|
|
|
|
private:
|
|
void create(cudaGraph_t const& graph);
|
|
bool update(cudaGraph_t const& graph);
|
|
void uploadToStream(runtime::CudaStream const& stream);
|
|
|
|
cudaGraphExec_t mInstance;
|
|
};
|
|
|
|
class CudaGraphExecutorCache
|
|
{
|
|
/// @brief LRU cache to store cuda graph instances.
|
|
public:
|
|
explicit CudaGraphExecutorCache(runtime::SizeType32 capacity)
|
|
: mCapacity(capacity)
|
|
{
|
|
}
|
|
|
|
std::optional<std::shared_ptr<CudaGraphExecutor>> get(BatchState const& state);
|
|
|
|
void put(BatchState const& state, std::shared_ptr<CudaGraphExecutor> const& value);
|
|
|
|
private:
|
|
using BatchStateGraphExecutorPair = std::pair<BatchState, std::shared_ptr<CudaGraphExecutor>>;
|
|
using GraphExecutorLruCache = std::list<BatchStateGraphExecutorPair>;
|
|
SizeType32 mCapacity;
|
|
GraphExecutorLruCache mCache;
|
|
std::unordered_map<BatchState, GraphExecutorLruCache::iterator, BatchStateHash> mMap;
|
|
};
|
|
} // namespace tensorrt_llm::batch_manager::utils
|