TensorRT-LLMs/cpp/tensorrt_llm/kernels/userbuffers/utils.h
2025-02-13 18:40:22 +08:00

663 lines
13 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda/atomic>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_fp8.h>
namespace tensorrt_llm::runtime::ub
{
#define ENABLE_FP8 1
#define ENABLE_BF16 1
template <typename T>
struct packed_type;
template <>
struct packed_type<float>
{
using type = float;
}; // we don't need to pack float by default
template <>
struct packed_type<half>
{
using type = half2;
};
#ifdef ENABLE_BF16
template <>
struct packed_type<__nv_bfloat16>
{
using type = __nv_bfloat162;
};
inline __device__ float2 bf1622float2(const __nv_bfloat162 val)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float2 f_val;
f_val.x = __low2float(val);
f_val.y = __high2float(val);
return f_val;
#else
return __bfloat1622float2(val);
#endif
}
inline __device__ int16_t bf1622int16(__nv_bfloat162 val)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
float2 f_val;
f_val.x = max(min(__low2float(val), 127.f), -128.f);
f_val.y = max(min(__high2float(val), 127.f), -128.f);
union
{
int8_t int8[2];
int16_t int16;
};
int8[0] = static_cast<int8_t>(static_cast<short>(f_val.x));
int8[1] = static_cast<int8_t>(static_cast<short>(f_val.y));
return int16;
#else
val = __hmin2(val, make_bfloat162(127., 127.));
val = __hmax2(val, make_bfloat162(-128., -128.));
union
{
int8_t int8[2];
int16_t int16;
};
int8[0] = static_cast<int8_t>(static_cast<short>(val.x));
int8[1] = static_cast<int8_t>(static_cast<short>(val.y));
return int16;
#endif
}
inline __device__ __nv_bfloat162 float22bf162(const float2 val)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
return __floats2bfloat162_rn(val.x, val.y);
#else
return __float22bfloat162_rn(val);
#endif
}
inline __device__ __nv_bfloat162 bf162bf162(const __nv_bfloat16 val)
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800
__nv_bfloat162 val2;
val2.x = val;
val2.y = val;
return val2;
#else
return __bfloat162bfloat162(val);
#endif
}
#endif
#ifdef ENABLE_FP8
template <>
struct packed_type<__nv_fp8_e4m3>
{
using type = __nv_fp8x2_e4m3;
};
__inline__ __device__ __nv_bfloat162 fp8x2_e4m3_to_bfloat2(__nv_fp8x2_e4m3 const* in)
{
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
__nv_bfloat162 out = __nv_bfloat162((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
return out;
}
__inline__ __device__ half2 fp8x2_e4m3_to_half2(__nv_fp8x2_e4m3 const* in)
{
const char2 tmp_val = reinterpret_cast<char2 const*>(in)[0];
half2 out = half2((float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.x)[0],
(float) reinterpret_cast<__nv_fp8_e4m3 const*>(&tmp_val.y)[0]);
return out;
}
#endif
template <typename T>
struct num_elems;
template <>
struct num_elems<float>
{
static constexpr int value = 1;
};
template <>
struct num_elems<float2>
{
static constexpr int value = 2;
};
template <>
struct num_elems<float4>
{
static constexpr int value = 4;
};
template <>
struct num_elems<half>
{
static constexpr int value = 1;
};
template <>
struct num_elems<half2>
{
static constexpr int value = 2;
};
#ifdef ENABLE_BF16
template <>
struct num_elems<__nv_bfloat16>
{
static constexpr int value = 1;
};
template <>
struct num_elems<__nv_bfloat162>
{
static constexpr int value = 2;
};
#endif
#ifdef ENABLE_FP8
template <>
struct num_elems<__nv_fp8_e4m3>
{
static constexpr int value = 1;
};
template <>
struct num_elems<__nv_fp8x2_e4m3>
{
static constexpr int value = 2;
};
#endif
template <typename T, int num>
struct packed_as;
template <typename T>
struct packed_as<T, 1>
{
using type = T;
};
template <>
struct packed_as<half, 2>
{
using type = half2;
};
template <>
struct packed_as<float, 2>
{
using type = float2;
};
template <>
struct packed_as<int8_t, 2>
{
using type = int16_t;
};
template <>
struct packed_as<int32_t, 2>
{
using type = int2;
};
template <>
struct packed_as<half2, 1>
{
using type = half;
};
template <>
struct packed_as<float2, 1>
{
using type = float;
};
#ifdef ENABLE_BF16
template <>
struct packed_as<__nv_bfloat16, 2>
{
using type = __nv_bfloat162;
};
template <>
struct packed_as<__nv_bfloat162, 1>
{
using type = __nv_bfloat16;
};
#endif
#ifdef ENABLE_FP8
template <>
struct packed_as<__nv_fp8_e4m3, 2>
{
using type = __nv_fp8x2_e4m3;
};
template <>
struct packed_as<__nv_fp8x2_e4m3, 1>
{
using type = __nv_fp8_e4m3;
};
template <>
struct packed_as<__nv_fp8_e5m2, 2>
{
using type = __nv_fp8x2_e5m2;
};
template <>
struct packed_as<__nv_fp8x2_e5m2, 1>
{
using type = __nv_fp8_e5m2;
};
#endif
inline __device__ float2 operator*(float2 a, float2 b)
{
return make_float2(a.x * b.x, a.y * b.y);
}
inline __device__ float2 operator+(float2 a, float2 b)
{
return make_float2(a.x + b.x, a.y + b.y);
}
inline __device__ float2 operator-(float2 a, float2 b)
{
return make_float2(a.x - b.x, a.y - b.y);
}
inline __device__ float2 operator*(float2 a, float b)
{
return make_float2(a.x * b, a.y * b);
}
inline __device__ float2 operator+(float2 a, float b)
{
return make_float2(a.x + b, a.y + b);
}
inline __device__ float2 operator-(float2 a, float b)
{
return make_float2(a.x - b, a.y - b);
}
template <typename T_OUT, typename T_IN>
__device__ inline T_OUT cuda_cast(T_IN val)
{
return val;
}
template <>
__device__ inline float2 cuda_cast<float2, int2>(int2 val)
{
return make_float2(val.x, val.y);
}
template <>
__device__ inline float2 cuda_cast<float2, float>(float val)
{
return make_float2(val, val);
}
template <>
__device__ inline float2 cuda_cast<float2, half2>(half2 val)
{
return __half22float2(val);
}
template <>
__device__ inline half2 cuda_cast<half2, float2>(float2 val)
{
return __float22half2_rn(val);
}
template <>
__device__ inline half2 cuda_cast<half2, float>(float val)
{
return __float2half2_rn(val);
}
template <>
__device__ inline half2 cuda_cast<half2, half>(half val)
{
return __half2half2(val);
}
template <>
__device__ inline int8_t cuda_cast<int8_t, half>(half val)
{
union
{
int8_t int8[2];
int16_t int16;
};
union
{
half fp16;
int16_t int16_in;
};
fp16 = val;
asm volatile("cvt.rni.sat.s8.f16 %0, %1;" : "=h"(int16) : "h"(int16_in));
return int8[0];
}
template <>
__device__ inline int16_t cuda_cast<int16_t, half2>(half2 val)
{
union
{
int8_t int8[2];
int16_t int16;
};
int8[0] = cuda_cast<int8_t>(val.x);
int8[1] = cuda_cast<int8_t>(val.y);
return int16;
}
template <>
__device__ inline int8_t cuda_cast<int8_t, float>(float val)
{
union
{
int8_t int8[2];
int16_t int16;
};
asm volatile("cvt.rni.sat.s8.f32 %0, %1;" : "=h"(int16) : "f"(val));
return int8[0];
}
template <>
__device__ inline int16_t cuda_cast<int16_t, float2>(float2 val)
{
union
{
int8_t int8[2];
int16_t int16;
};
int8[0] = cuda_cast<int8_t>(val.x);
int8[1] = cuda_cast<int8_t>(val.y);
return int16;
}
template <>
__device__ inline half2 cuda_cast<half2, int16_t>(int16_t val)
{
union
{
int8_t int8[2];
int16_t int16;
};
int16 = val;
return make_half2(int8[0], int8[1]);
}
template <>
__device__ inline float2 cuda_cast<float2, int16_t>(int16_t val)
{
union
{
int8_t int8[2];
int16_t int16;
};
int16 = val;
return make_float2(int8[0], int8[1]);
}
#ifdef ENABLE_BF16
template <>
__device__ inline __nv_bfloat16 cuda_cast(int32_t val)
{
return static_cast<float>(val);
}
template <>
__device__ inline __nv_bfloat16 cuda_cast(int8_t val)
{
return static_cast<float>(val);
}
template <>
__device__ inline int8_t cuda_cast(__nv_bfloat16 val)
{
return static_cast<float>(val);
}
template <>
__device__ inline float cuda_cast<float, __nv_bfloat16>(__nv_bfloat16 val)
{
return __bfloat162float(val);
}
template <>
__device__ inline float2 cuda_cast<float2, __nv_bfloat162>(__nv_bfloat162 val)
{
return bf1622float2(val);
}
template <>
__device__ inline half cuda_cast<half, __nv_bfloat16>(__nv_bfloat16 val)
{
return __float2half(__bfloat162float(val));
}
template <>
__device__ inline int16_t cuda_cast<int16_t, __nv_bfloat162>(__nv_bfloat162 val)
{
return bf1622int16(val);
}
template <>
__device__ inline __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val)
{
return __float2bfloat16(val);
}
template <>
__device__ inline __nv_bfloat16 cuda_cast<__nv_bfloat16, half>(half val)
{
return __float2bfloat16(__half2float(val));
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, __nv_bfloat16>(__nv_bfloat16 val)
{
return bf162bf162(val);
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, float>(float val)
{
return __float2bfloat162_rn(val);
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, float2>(float2 val)
{
return float22bf162(val);
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, int16_t>(int16_t val)
{
union
{
int8_t int8[2];
int16_t int16;
};
int16 = val;
__nv_bfloat162 res;
res.x = cuda_cast<__nv_bfloat16>(int8[0]);
res.y = cuda_cast<__nv_bfloat16>(int8[1]);
return res;
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, half2>(half2 val)
{
return float22bf162(__half22float2(val));
}
#endif // ENABLE BF16
#ifdef ENABLE_FP8
template <>
__device__ inline float2 cuda_cast<float2, __nv_fp8x2_e4m3>(__nv_fp8x2_e4m3 val)
{
return bf1622float2(fp8x2_e4m3_to_bfloat2(&val));
}
template <>
__device__ inline half2 cuda_cast<half2, __nv_fp8x2_e4m3>(__nv_fp8x2_e4m3 val)
{
return fp8x2_e4m3_to_half2(&val);
}
template <>
__device__ inline __nv_fp8x2_e4m3 cuda_cast<__nv_fp8x2_e4m3, float2>(float2 val)
{
return __nv_fp8x2_e4m3(bf1622float2(float22bf162(val)));
}
template <>
__device__ inline __nv_fp8x2_e4m3 cuda_cast<__nv_fp8x2_e4m3, half2>(half2 val)
{
return __nv_fp8x2_e4m3(cuda_cast<float2>(val));
}
template <>
__device__ inline __nv_fp8x2_e4m3 cuda_cast<__nv_fp8x2_e4m3, __nv_bfloat162>(__nv_bfloat162 val)
{
return __nv_fp8x2_e4m3(cuda_cast<float2>(val));
}
template <>
__device__ inline __nv_fp8_e4m3 cuda_cast<__nv_fp8_e4m3, half>(half val)
{
return __nv_fp8_e4m3(val);
}
template <>
__device__ inline __nv_fp8_e4m3 cuda_cast<__nv_fp8_e4m3, __nv_bfloat16>(__nv_bfloat16 val)
{
return __nv_fp8_e4m3(val);
}
template <>
__device__ inline __nv_fp8_e4m3 cuda_cast<__nv_fp8_e4m3, float>(float val)
{
return __nv_fp8_e4m3(val);
}
template <>
__device__ inline float cuda_cast<float, __nv_fp8_e4m3>(__nv_fp8_e4m3 val)
{
return (float) val;
}
template <>
__device__ inline __nv_bfloat162 cuda_cast<__nv_bfloat162, __nv_fp8x2_e4m3>(__nv_fp8x2_e4m3 val)
{
return fp8x2_e4m3_to_bfloat2(&val);
}
template <>
__device__ inline int8_t cuda_cast<int8_t, __nv_fp8_e4m3>(__nv_fp8_e4m3 val)
{
// no impl
return 0;
}
template <>
__device__ inline __nv_fp8_e4m3 cuda_cast<__nv_fp8_e4m3, int8_t>(int8_t val)
{
return cuda_cast<__nv_fp8_e4m3>(cuda_cast<__nv_bfloat16>(cuda_cast<float>(val)));
}
#endif // ENABLE_FP8
#define FINAL_MASK 0xffffffff
template <typename T, int NUM>
__inline__ __device__ T warpReduceSumV2(T* val)
{
#pragma unroll
for (int i = 0; i < NUM; i++)
{
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1)
val[i] += __shfl_xor_sync(FINAL_MASK, val[i], mask, 32);
}
return (T) (0.0f);
}
template <typename T, int NUM>
__inline__ __device__ T blockReduceSumV2(T* val)
{
static __shared__ T shared[NUM][33];
int lane = threadIdx.x & 0x1f;
int wid = threadIdx.x >> 5;
warpReduceSumV2<T, NUM>(val);
if (lane == 0)
{
#pragma unroll
for (int i = 0; i < NUM; i++)
{
shared[i][wid] = val[i];
}
}
__syncthreads();
bool is_mask = threadIdx.x < (blockDim.x / 32.f);
#pragma unroll
for (int i = 0; i < NUM; i++)
{
val[i] = is_mask ? shared[i][lane] : (T) (0.0f);
}
warpReduceSumV2<T, NUM>(val);
return (T) 0.0f;
}
static bool const kDISABLE_FP32_ACCUMULATION = getenv("TRTLLM_UB_AR_DISABLE_FP32_ACCUMULATION") != nullptr;
} // namespace tensorrt_llm::runtime::ub