mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
1082 lines
43 KiB
Python
1082 lines
43 KiB
Python
import math
|
|
import weakref
|
|
from enum import IntEnum
|
|
from typing import Optional, cast
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from tensorrt_llm.mapping import Mapping
|
|
|
|
from ..attention_backend import (AttentionInputType, AttentionMetadata,
|
|
TrtllmAttention, TrtllmAttentionMetadata)
|
|
from ..attention_backend.interface import (PositionalEmbeddingParams,
|
|
PredefinedAttentionMask)
|
|
from ..attention_backend.utils import create_attention, get_attention_backend
|
|
from ..distributed import AllReduceParams
|
|
from ..model_config import ModelConfig
|
|
from ..peft.lora.layer import LoraLayer, LoraModuleType
|
|
from ..utils import get_model_extra_attrs
|
|
from .linear import Linear, TensorParallelMode, WeightMode, WeightsLoadingConfig
|
|
from .multi_stream_utils import maybe_execute_in_parallel
|
|
from .rms_norm import RMSNorm
|
|
from .rotary_embedding import RotaryEmbedding
|
|
|
|
|
|
class QkNormType(IntEnum):
|
|
"""
|
|
The type of QK normalization.
|
|
"""
|
|
none = 0 # No normalization applied to Q and K
|
|
pre_rope = 1 # Apply normalization before Rope
|
|
post_rope = 2 # Apply normalization after Rope
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
hidden_size: int,
|
|
num_attention_heads: int,
|
|
num_key_value_heads: int,
|
|
max_position_embeddings: int,
|
|
bias: bool,
|
|
pos_embd_params: Optional[PositionalEmbeddingParams] = None,
|
|
qk_norm_type: QkNormType = QkNormType.none,
|
|
layer_idx: Optional[int] = None,
|
|
dtype: torch.dtype = None,
|
|
dense_bias: Optional[bool] = None,
|
|
config: Optional[ModelConfig] = None,
|
|
q_scaling: float = 1.0,
|
|
attention_chunk_size: Optional[int] = None,
|
|
):
|
|
"""
|
|
Initialize the Attention module.
|
|
|
|
Args:
|
|
hidden_size (int): The size of the hidden dimension.
|
|
num_attention_heads (int): The number of attention heads.
|
|
num_key_value_heads (int): The number of key value heads.
|
|
max_position_embeddings (int): The maximum position embeddings.
|
|
bias (bool): Whether to use bias in the linear layers.
|
|
pos_embd_params (PositionalEmbeddingParams): The positional embedding parameters.
|
|
qk_norm_type (QkNormType): The type of QK normalization.
|
|
layer_idx (int): The layer index.
|
|
dtype (torch.dtype): The data type.
|
|
dense_bias (bool): Whether to use bias in the output projection layer.
|
|
config (ModelConfig): The model configuration.
|
|
q_scaling (float): The scaling factor for the qk_scale. The definition is $O = softmax(QK^T * qk_scale) * V, qk_scale = 1 / (sqrt(head_dim) * q_scaling)$. The default value is 1.0.
|
|
attention_chunk_size (int): See [Chunked Attention] below.
|
|
"""
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
|
|
config = config or ModelConfig()
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_attention_heads
|
|
self.head_dim = getattr(config.pretrained_config, "head_dim",
|
|
self.hidden_size // self.num_heads)
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.pos_embd_params = pos_embd_params
|
|
self.qk_norm_type = qk_norm_type
|
|
self.dense_bias = dense_bias
|
|
self.q_scaling = q_scaling
|
|
|
|
# [Chunked Attention]
|
|
# Chunked attention is applied to context requests only. Chunked attention will be
|
|
# applied when this field is specified and mMaskType == CAUSAL.
|
|
#
|
|
# In chunked attention, we break context requests into chunks of a specified size. Tokens can only
|
|
# attend to tokens in the same chunk. So, for example, if the chunk size is 3, we might have a mask
|
|
# that looks like this:
|
|
#
|
|
# 1 0 0 0 0 0
|
|
# 1 1 0 0 0 0
|
|
# 1 1 1 0 0 0
|
|
# 0 0 0 1 0 0
|
|
# 0 0 0 1 1 0
|
|
# 0 0 0 1 1 1
|
|
self.attention_chunk_size = attention_chunk_size
|
|
|
|
if dense_bias is None:
|
|
self.dense_bias = bias
|
|
|
|
# tensor parallel
|
|
tp_size = config.mapping.tp_size
|
|
pp_size = config.mapping.pp_size
|
|
if config.mapping.enable_attention_dp:
|
|
tp_size = 1
|
|
|
|
mapping = Mapping(
|
|
world_size=tp_size * pp_size,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
rank=config.mapping.rank,
|
|
gpus_per_node=config.mapping.gpus_per_node,
|
|
enable_attention_dp=config.mapping.enable_attention_dp,
|
|
)
|
|
assert self.num_heads % tp_size == 0
|
|
self.num_heads = self.num_heads // tp_size
|
|
self.num_key_value_heads = (self.num_key_value_heads + tp_size -
|
|
1) // tp_size
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_key_value_heads * self.head_dim
|
|
|
|
self.qkv_proj = Linear(
|
|
self.hidden_size,
|
|
tp_size * self.q_size + 2 * tp_size * self.kv_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
weights_loading_config=WeightsLoadingConfig(
|
|
weight_mode=WeightMode.FUSED_QKV_LINEAR),
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
)
|
|
self.o_lora = LoraLayer([LoraModuleType.ATTENTION_DENSE],
|
|
[self.hidden_size])
|
|
|
|
self.o_proj = Linear(
|
|
tp_size * self.q_size,
|
|
self.hidden_size,
|
|
bias=self.dense_bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.ROW,
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
lora=self.o_lora,
|
|
)
|
|
|
|
self.quant_config = config.get_quant_config()
|
|
self.attn_backend = config.attn_backend
|
|
attn_cls = get_attention_backend(self.attn_backend)
|
|
|
|
# These two modules are mutually exclusive - either splitted_qkv_lora or fused_qkv_lora will be used,
|
|
# but never both at the same time. splitted_qkv_lora handles Q,K,V separately while fused_qkv_lora
|
|
# handles them as a single fused operation.
|
|
self.splitted_qkv_lora = LoraLayer([
|
|
LoraModuleType.ATTENTION_Q, LoraModuleType.ATTENTION_K,
|
|
LoraModuleType.ATTENTION_V
|
|
], [self.q_size, self.kv_size, self.kv_size])
|
|
self.fused_qkv_lora = LoraLayer([LoraModuleType.ATTENTION_QKV],
|
|
[self.q_size + 2 * self.kv_size])
|
|
|
|
self.o_lora = LoraLayer([LoraModuleType.ATTENTION_DENSE],
|
|
[self.hidden_size])
|
|
|
|
# enable_rope_fusion: Whether to fuse RoPE into the attention OP.
|
|
# If true, RoPE will be applied in self.attn.forward.
|
|
# If false, RoPE will be applied in self.apply_rope.
|
|
self.enable_rope_fusion = attn_cls.support_fused_rope(
|
|
) and self.qk_norm_type != QkNormType.post_rope
|
|
|
|
self.rotary_emb = None
|
|
if not self.enable_rope_fusion and self.pos_embd_params is not None:
|
|
self.rotary_emb = RotaryEmbedding(
|
|
self.pos_embd_params.rope,
|
|
head_dim=self.head_dim,
|
|
is_neox=self.pos_embd_params.is_neox,
|
|
)
|
|
|
|
self.attn = create_attention(
|
|
self.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.num_key_value_heads,
|
|
pos_embd_params=self.pos_embd_params
|
|
if self.enable_rope_fusion else None,
|
|
quant_config=self.quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
q_scaling=self.q_scaling,
|
|
attention_chunk_size=self.attention_chunk_size,
|
|
)
|
|
|
|
self.support_fused_qkv = self.attn.support_fused_qkv()
|
|
|
|
if not config.skip_create_weights_in_init:
|
|
self.create_weights()
|
|
|
|
def create_weights(self):
|
|
# self.attn has no weights but has states that are related to quant_config,
|
|
# which could be modified after __init__
|
|
self.attn.update_quant_config(self.quant_config)
|
|
|
|
def split_qkv(self, q, k=None, v=None):
|
|
if k is None and v is None:
|
|
q, k, v = q.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
return q, k, v
|
|
|
|
def convert_qkv(self, q, k, v):
|
|
if k is None and v is None and not self.support_fused_qkv:
|
|
q, k, v = self.split_qkv(q)
|
|
elif k is not None and v is not None and self.support_fused_qkv:
|
|
qkv = torch.concat([q, k, v], dim=-1)
|
|
q, k, v = qkv, None, None
|
|
return q, k, v
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: Optional[torch.LongTensor],
|
|
hidden_states: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
attention_mask: PredefinedAttentionMask = PredefinedAttentionMask.
|
|
CAUSAL,
|
|
mrope_config: Optional[dict] = None,
|
|
all_reduce_params: Optional[AllReduceParams] = None,
|
|
lora_params: Optional[dict] = None,
|
|
attention_window_size: Optional[int] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the Attention module.
|
|
|
|
Args:
|
|
position_ids (Optional[torch.LongTensor]): The position IDs.
|
|
hidden_states (torch.Tensor): The hidden states.
|
|
attn_metadata (AttentionMetadata): The attention metadata.
|
|
attention_mask (PredefinedAttentionMask): The attention mask type.
|
|
mrope_config (Optional[dict]): The MROPE configuration.
|
|
all_reduce_params (Optional[AllReduceParams]): The all reduce parameters.
|
|
lora_params (Optional[dict]): The LoRA parameters.
|
|
attention_window_size (Optional[int]): The attention window size.
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor.
|
|
"""
|
|
qkv = self.qkv_proj(hidden_states)
|
|
|
|
if bool(lora_params):
|
|
qkv_lora = self.splitted_qkv_lora(hidden_states, lora_params,
|
|
self.layer_idx)
|
|
if qkv_lora is not None:
|
|
qkv = qkv + qkv_lora
|
|
|
|
qkv_lora = self.fused_qkv_lora(hidden_states, lora_params,
|
|
self.layer_idx)
|
|
if qkv_lora is not None:
|
|
qkv = qkv + qkv_lora
|
|
|
|
q, k, v = self.apply_rope(qkv, position_ids)
|
|
|
|
out_scale = None
|
|
if self.o_proj.has_fp8_qdq or self.o_proj.has_nvfp4 or self.o_proj.has_fp8_block_scales:
|
|
out_scale = self.o_proj.inv_input_scale
|
|
|
|
q, k, v = self.convert_qkv(q, k, v)
|
|
attn_output = self.attn.forward(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_metadata,
|
|
out_scale=out_scale,
|
|
attention_mask=attention_mask,
|
|
mrope_config=mrope_config,
|
|
attention_window_size=attention_window_size)
|
|
hidden_states = attn_output
|
|
attn_output = self.o_proj(attn_output,
|
|
all_reduce_params=all_reduce_params,
|
|
lora_params=lora_params,
|
|
layer_idx=self.layer_idx)
|
|
return attn_output
|
|
|
|
def apply_qk_norm(self, q, k):
|
|
raise NotImplementedError(
|
|
f"QK norm is not implemented for {self.__class__.__name__}."
|
|
"Please override the `apply_qk_norm` method in the subclass.")
|
|
|
|
def apply_rope(self, qkv: torch.Tensor, position_ids: torch.Tensor):
|
|
"""
|
|
Apply RoPE to the query and key, possibly including QK norm.
|
|
Args:
|
|
qkv (torch.Tensor): The query, key, and value tensor.
|
|
position_ids (torch.Tensor): The position IDs of each token for RoPE.
|
|
Returns:
|
|
tuple: A tuple of (q, k, v).
|
|
This method could be overridden in the subclass, it is possible that k/v is None and q is the concatenated qkv tensor, up to the implementation.
|
|
Before self.attn.forward, convert_qkv will be called to make sure that the format of (q, k, v) satisfies the requirement of self.attn.
|
|
"""
|
|
q, k, v = qkv, None, None
|
|
if self.qk_norm_type == QkNormType.pre_rope:
|
|
q, k, v = self.split_qkv(q, k, v)
|
|
q, k = self.apply_qk_norm(q, k)
|
|
if not self.enable_rope_fusion and position_ids is not None:
|
|
q, k, v = self.split_qkv(q, k, v)
|
|
q, k = self.rotary_emb(position_ids, [q, k])
|
|
if self.qk_norm_type == QkNormType.post_rope:
|
|
q, k = self.apply_qk_norm(q, k)
|
|
|
|
return q, k, v
|
|
|
|
|
|
def extract_extra_attrs(layer_idx: str):
|
|
extra_attrs = get_model_extra_attrs()
|
|
assert extra_attrs is not None, "Model extra attrs is not set"
|
|
|
|
metadata_ref = extra_attrs.get("attention_metadata", None)
|
|
assert metadata_ref is not None, "Attention metadata is not set"
|
|
metadata = metadata_ref()
|
|
assert isinstance(
|
|
metadata,
|
|
TrtllmAttentionMetadata,
|
|
)
|
|
|
|
mla_layers = extra_attrs.get("mla_layers", None)
|
|
assert mla_layers is not None, "MLA layers is not registered"
|
|
mla_layer_ref = mla_layers.get(layer_idx, None)
|
|
assert mla_layer_ref is not None, f"Cannot find MLA layer for layer {layer_idx}"
|
|
mla_layer = mla_layer_ref()
|
|
assert isinstance(
|
|
mla_layer,
|
|
MLA), "MLA layer must be a subclass of MLA or an instance of MLA"
|
|
|
|
return metadata, mla_layer
|
|
|
|
|
|
@torch.library.custom_op("trtllm::mla_custom_op", mutates_args=())
|
|
def mla_custom_op(
|
|
position_ids: Optional[torch.Tensor],
|
|
hidden_states: torch.Tensor,
|
|
layer_idx: str,
|
|
) -> torch.Tensor:
|
|
metadata, mla_layer = extract_extra_attrs(layer_idx)
|
|
|
|
return mla_layer.forward_impl(position_ids, hidden_states, metadata)
|
|
|
|
|
|
@mla_custom_op.register_fake
|
|
def _(position_ids, hidden_states, layer_idx):
|
|
_, mla_layer = extract_extra_attrs(layer_idx)
|
|
return mla_layer.forward_impl_fake(hidden_states)
|
|
|
|
|
|
class MLA(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
hidden_size: int,
|
|
num_attention_heads: int,
|
|
num_key_value_heads: int,
|
|
qk_nope_head_dim: int,
|
|
qk_rope_head_dim: int,
|
|
v_head_dim: int,
|
|
q_lora_rank: int,
|
|
kv_lora_rank: int,
|
|
predicted_tokens_per_seq: int,
|
|
max_position_embeddings: int,
|
|
bias: bool,
|
|
aux_stream: Optional[torch.cuda.Stream] = None,
|
|
pos_embd_params: Optional[PositionalEmbeddingParams] = None,
|
|
layer_idx: Optional[int] = None,
|
|
dtype: torch.dtype = None,
|
|
dense_bias: Optional[bool] = None,
|
|
config: Optional[ModelConfig] = None,
|
|
):
|
|
"""
|
|
Initialize the MLA module.
|
|
|
|
Args:
|
|
hidden_size (int): The size of the hidden dimension.
|
|
num_attention_heads (int): The number of attention heads.
|
|
num_key_value_heads (int): The number of key value heads.
|
|
qk_nope_head_dim (int): The dimension of the query and key without Rope.
|
|
qk_rope_head_dim (int): The dimension of the Rope of query and key.
|
|
v_head_dim (int): The dimension of the value.
|
|
q_lora_rank (int): The dimension of the compressed query.
|
|
kv_lora_rank (int): The dimension of the compressed key and value.
|
|
predicted_tokens_per_seq (int): The number of predicted tokens per sequence.
|
|
max_position_embeddings (int): The maximum position embeddings.
|
|
bias (bool): Whether to use bias in the linear layers.
|
|
aux_stream (Optional[torch.cuda.Stream]): The auxiliary CUDA stream for running operations in two parallel streams.
|
|
pos_embd_params (PositionalEmbeddingParams): The positional embedding parameters.
|
|
layer_idx (int): The layer index.
|
|
dtype (torch.dtype): The data type.
|
|
dense_bias (bool): Whether to use bias in the output projection layer.
|
|
config (ModelConfig): The model configuration.
|
|
"""
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.layer_idx_str = str(layer_idx)
|
|
self.dtype = dtype
|
|
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_attention_heads
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.qk_nope_head_dim = qk_nope_head_dim
|
|
self.qk_rope_head_dim = qk_rope_head_dim
|
|
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
|
self.v_head_dim = v_head_dim
|
|
self.q_lora_rank = q_lora_rank
|
|
self.kv_lora_rank = kv_lora_rank
|
|
self.predicted_tokens_per_seq = predicted_tokens_per_seq
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.pos_embd_params = pos_embd_params
|
|
self.dense_bias = dense_bias
|
|
if dense_bias is None:
|
|
self.dense_bias = bias
|
|
|
|
if self.q_lora_rank is None:
|
|
self.q_lora_rank = hidden_size
|
|
self.is_lite = True
|
|
else:
|
|
self.is_lite = False
|
|
|
|
assert pos_embd_params is not None, "pos_embd_params must be provided in MLA"
|
|
|
|
self.register_to_config = False
|
|
if config is not None:
|
|
if "mla_layers" not in config.extra_attrs:
|
|
config.extra_attrs["mla_layers"] = {}
|
|
config.extra_attrs["mla_layers"][self.layer_idx_str] = weakref.ref(
|
|
self)
|
|
self.register_to_config = True
|
|
|
|
# tensor parallel
|
|
config = config or ModelConfig()
|
|
tp_size = config.mapping.tp_size
|
|
pp_size = config.mapping.pp_size
|
|
if config.mapping.enable_attention_dp:
|
|
tp_size = 1
|
|
|
|
mapping = Mapping(
|
|
world_size=tp_size * pp_size,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
rank=config.mapping.rank,
|
|
gpus_per_node=config.mapping.gpus_per_node,
|
|
enable_attention_dp=config.mapping.enable_attention_dp,
|
|
)
|
|
|
|
assert self.num_heads % tp_size == 0
|
|
self.num_heads = self.num_heads // tp_size
|
|
self.num_key_value_heads = (self.num_key_value_heads + tp_size -
|
|
1) // tp_size
|
|
|
|
rms_norm_eps = config.pretrained_config.rms_norm_eps
|
|
quant_config = config.get_quant_config()
|
|
self.quant_config = quant_config
|
|
|
|
if not self.is_lite:
|
|
self.fused_a = Linear(
|
|
hidden_size,
|
|
self.q_lora_rank + self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
use_custom_cublas_mm=True)
|
|
|
|
self.q_a_layernorm = RMSNorm(hidden_size=self.q_lora_rank,
|
|
eps=rms_norm_eps,
|
|
dtype=dtype)
|
|
|
|
self.q_b_proj = Linear(
|
|
self.q_lora_rank,
|
|
tp_size * self.num_heads * self.qk_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init)
|
|
else:
|
|
self.fused_a = Linear(
|
|
hidden_size,
|
|
self.kv_lora_rank + self.qk_rope_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
use_custom_cublas_mm=True)
|
|
|
|
self.q_proj = Linear(
|
|
self.q_lora_rank,
|
|
tp_size * self.num_heads * self.qk_head_dim,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
)
|
|
self.q_b_proj = self.q_proj
|
|
|
|
self.kv_a_layernorm = RMSNorm(hidden_size=kv_lora_rank,
|
|
dtype=dtype,
|
|
eps=rms_norm_eps)
|
|
|
|
self.kv_b_proj = Linear(
|
|
self.kv_lora_rank,
|
|
tp_size * self.num_heads *
|
|
(self.qk_nope_head_dim + self.v_head_dim),
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init)
|
|
# This parameter will view into self.kv_b_proj.weight after loading weights.
|
|
# For dummy weight initialization, this parameter is initialized with empty tensor.
|
|
# Used in forward_generation only
|
|
self.v_b_proj = nn.Parameter(
|
|
torch.empty(
|
|
(self.num_heads, self.v_head_dim, self.kv_lora_rank),
|
|
dtype=dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
|
|
self.o_proj = Linear(
|
|
self.num_key_value_heads * self.v_head_dim * tp_size,
|
|
self.hidden_size,
|
|
bias=self.dense_bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.ROW,
|
|
quant_config=quant_config,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
)
|
|
|
|
def yarn_get_mscale(scale=1, mscale=1):
|
|
if scale <= 1:
|
|
return 1.0
|
|
return 0.1 * mscale * math.log(scale) + 1.0
|
|
|
|
mscale_all_dim = pos_embd_params.rope.mscale_all_dim
|
|
scaling_factor = pos_embd_params.rope.scale
|
|
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
|
|
q_scaling = 1.0 / (mscale * mscale)
|
|
|
|
self.mha = create_attention(
|
|
config.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
head_dim=self.qk_head_dim,
|
|
num_kv_heads=self.num_key_value_heads,
|
|
pos_embd_params=pos_embd_params,
|
|
quant_config=quant_config,
|
|
q_scaling=q_scaling,
|
|
is_mla_enable=True,
|
|
q_lora_rank=self.q_lora_rank,
|
|
kv_lora_rank=self.kv_lora_rank,
|
|
qk_nope_head_dim=self.qk_nope_head_dim,
|
|
qk_rope_head_dim=self.qk_rope_head_dim,
|
|
v_head_dim=self.v_head_dim,
|
|
predicted_tokens_per_seq=self.predicted_tokens_per_seq,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
)
|
|
|
|
self.mqa = create_attention(
|
|
config.attn_backend,
|
|
self.layer_idx,
|
|
self.num_heads,
|
|
head_dim=self.kv_lora_rank + self.qk_rope_head_dim,
|
|
num_kv_heads=1,
|
|
pos_embd_params=pos_embd_params,
|
|
quant_config=quant_config,
|
|
q_scaling=q_scaling,
|
|
is_mla_enable=True,
|
|
q_lora_rank=self.q_lora_rank,
|
|
kv_lora_rank=self.kv_lora_rank,
|
|
qk_nope_head_dim=self.qk_nope_head_dim,
|
|
qk_rope_head_dim=self.qk_rope_head_dim,
|
|
v_head_dim=self.kv_lora_rank,
|
|
predicted_tokens_per_seq=self.predicted_tokens_per_seq,
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
)
|
|
|
|
self.aux_stream = aux_stream
|
|
self.ln_events = [torch.cuda.Event(), torch.cuda.Event()]
|
|
|
|
self.enable_rope_fusion = self.mha.support_fused_rope()
|
|
self.support_fused_qkv = self.mha.support_fused_qkv()
|
|
self.rotary_emb = RotaryEmbedding(
|
|
pos_embd_params.rope,
|
|
head_dim=self.qk_rope_head_dim,
|
|
is_neox=pos_embd_params.is_neox,
|
|
)
|
|
self.apply_rotary_emb = not self.enable_rope_fusion
|
|
|
|
if not config.skip_create_weights_in_init:
|
|
self.create_weights()
|
|
|
|
def create_weights(self):
|
|
# self.mha/mqa has no weights but has states that are related to quant_config,
|
|
# which could be modified after __init__
|
|
self.mha.update_quant_config(self.quant_config)
|
|
self.mqa.update_quant_config(self.quant_config)
|
|
|
|
# k_b_proj_trans's dtype must be consistent with self.kv_b_proj,
|
|
# which can be modified after __init__
|
|
has_fp8_block_scales = (
|
|
self.kv_b_proj.quant_config
|
|
and self.kv_b_proj.quant_config.quant_mode.has_fp8_block_scales())
|
|
|
|
mla_weight_dtype = torch.float8_e4m3fn if has_fp8_block_scales else self.dtype
|
|
self.k_b_proj_trans = nn.Parameter(
|
|
torch.empty(
|
|
(self.num_heads, self.kv_lora_rank, self.qk_nope_head_dim),
|
|
dtype=mla_weight_dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
|
|
if has_fp8_block_scales:
|
|
self.k_b_proj_trans_scale = nn.Parameter(
|
|
torch.empty(
|
|
(
|
|
self.num_heads,
|
|
self.kv_lora_rank // 128,
|
|
self.qk_nope_head_dim // 128,
|
|
),
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
# This parameter will view into self.kv_b_proj.weight_scale after loading weights.
|
|
# For dummy weight initialization, this parameter is initialized with empty tensor.
|
|
self.v_b_proj_scale = nn.Parameter(
|
|
torch.empty(
|
|
(
|
|
self.num_heads,
|
|
self.v_head_dim // 128,
|
|
self.kv_lora_rank // 128,
|
|
),
|
|
dtype=torch.float32,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
else:
|
|
self.k_b_proj_trans_scale = None
|
|
self.v_b_proj_scale = None
|
|
|
|
def apply_rope(
|
|
self,
|
|
q: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
q = q.view(-1, self.num_heads, self.qk_head_dim)
|
|
q_pe = q[..., self.qk_nope_head_dim:].reshape(
|
|
-1, self.num_heads * self.qk_rope_head_dim)
|
|
q_pe, k_pe = self.rotary_emb(position_ids, [q_pe, k_pe])
|
|
q[..., self.qk_nope_head_dim:] = q_pe.view(-1, self.num_heads,
|
|
self.qk_rope_head_dim)
|
|
return k_pe
|
|
|
|
def forward_impl_fake(self, hidden_states: torch.Tensor):
|
|
num_tokens = hidden_states.shape[0]
|
|
hidden_size = self.o_proj.in_features
|
|
return hidden_states.new_empty([num_tokens, hidden_size],
|
|
dtype=hidden_states.dtype)
|
|
|
|
def forward_impl(
|
|
self,
|
|
position_ids: Optional[torch.Tensor],
|
|
hidden_states: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the MLA module.
|
|
|
|
Args:
|
|
position_ids (Optional[torch.LongTensor]): The position IDs.
|
|
hidden_states (torch.Tensor): The hidden states.
|
|
attn_metadata (AttentionMetadata): The attention metadata.
|
|
all_reduce_params (Optional[AllReduceParams]): The all reduce parameters.
|
|
|
|
Returns:
|
|
torch.Tensor: The output tensor.
|
|
"""
|
|
if self.is_lite:
|
|
compressed_kv, k_pe = self.fused_a(hidden_states).split(
|
|
[self.kv_lora_rank, self.qk_rope_head_dim], -1)
|
|
compressed_kv = self.kv_a_layernorm(compressed_kv)
|
|
q = hidden_states
|
|
else:
|
|
q, compressed_kv, k_pe = self.fused_a(hidden_states).split(
|
|
[self.q_lora_rank, self.kv_lora_rank, self.qk_rope_head_dim],
|
|
-1)
|
|
|
|
q, compressed_kv = maybe_execute_in_parallel(
|
|
lambda: self.q_a_layernorm(q),
|
|
lambda: self.kv_a_layernorm(compressed_kv),
|
|
self.ln_events[0],
|
|
self.ln_events[1],
|
|
self.aux_stream,
|
|
)
|
|
|
|
q, latent_cache = maybe_execute_in_parallel(
|
|
lambda: self.q_b_proj(q),
|
|
lambda: torch.concat([compressed_kv, k_pe], dim=-1),
|
|
self.ln_events[0],
|
|
self.ln_events[1],
|
|
self.aux_stream,
|
|
)
|
|
|
|
# split q, k, v into context and gen batches
|
|
num_contexts = attn_metadata.num_contexts
|
|
num_generations = attn_metadata.num_generations
|
|
num_ctx_tokens = attn_metadata.num_ctx_tokens
|
|
num_tokens = attn_metadata.num_tokens
|
|
|
|
assert q.shape[
|
|
0] == num_tokens, f"Expect q.shape[0] to be {num_tokens}, but got {q.shape[0]}"
|
|
|
|
if num_contexts > 0:
|
|
q_ctx = q[:num_ctx_tokens, ...]
|
|
compressed_kv_ctx = compressed_kv[:num_ctx_tokens, ...]
|
|
k_pe_ctx = k_pe[:num_ctx_tokens, ...]
|
|
latent_cache_ctx = latent_cache[:num_ctx_tokens, ...]
|
|
if self.apply_rotary_emb:
|
|
assert position_ids is not None
|
|
k_pe_ctx = self.apply_rope(q_ctx, k_pe_ctx, position_ids)
|
|
|
|
attn_output_context = self.forward_context(q_ctx, compressed_kv_ctx,
|
|
k_pe_ctx, attn_metadata,
|
|
latent_cache_ctx,
|
|
position_ids)
|
|
else:
|
|
attn_output_context = None
|
|
|
|
if num_generations > 0:
|
|
q_gen = q[num_ctx_tokens:, ...]
|
|
compressed_kv_gen = compressed_kv[num_ctx_tokens:, ...]
|
|
k_pe_gen = k_pe[num_ctx_tokens:, ...]
|
|
latent_cache_gen = latent_cache[num_ctx_tokens:, ...]
|
|
if self.apply_rotary_emb:
|
|
assert position_ids is not None
|
|
k_pe_gen = self.apply_rope(q_gen, k_pe_gen, position_ids)
|
|
|
|
attn_output_gen = self.forward_generation(q_gen, compressed_kv_gen,
|
|
k_pe_gen, attn_metadata,
|
|
latent_cache_gen)
|
|
else:
|
|
attn_output_gen = None
|
|
|
|
# release pytorch activation memory
|
|
q = None
|
|
compressed_kv = None
|
|
k_pe = None
|
|
|
|
# merge context and gen batches
|
|
if attn_output_context is not None and attn_output_gen is not None:
|
|
assert (
|
|
len(attn_output_context.shape) == 2
|
|
), f"attn_output_context must be rank 2, not {len(attn_output_context.shape)}"
|
|
assert (
|
|
len(attn_output_gen.shape) == 2
|
|
), f"attn_output_gen must be rank 2, not {len(attn_output_gen.shape)}"
|
|
attn_output = torch.cat([attn_output_context, attn_output_gen],
|
|
dim=0)
|
|
# release pytorch activation memory
|
|
attn_output_context = None
|
|
attn_output_gen = None
|
|
elif attn_output_gen is None:
|
|
attn_output = attn_output_context
|
|
else:
|
|
attn_output = attn_output_gen
|
|
|
|
return attn_output
|
|
|
|
def _maybe_concat_qkv(self, q, k, v):
|
|
if k is not None and v is not None and self.support_fused_qkv:
|
|
qkv = torch.concat([q, k, v], dim=-1)
|
|
q, k, v = qkv, None, None
|
|
return q, k, v
|
|
|
|
def forward_context_default(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
latent_cache: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
kv = self.kv_b_proj(compressed_kv)
|
|
k_nope, v = kv.split(
|
|
[
|
|
self.num_heads * self.qk_nope_head_dim,
|
|
self.num_heads * self.v_head_dim
|
|
],
|
|
-1,
|
|
)
|
|
|
|
k = torch.empty_like(q).view(-1, self.num_heads, self.qk_head_dim)
|
|
k[..., :self.qk_nope_head_dim] = k_nope.view(-1, self.num_heads,
|
|
self.qk_nope_head_dim)
|
|
if self.apply_rotary_emb:
|
|
k[..., self.qk_nope_head_dim:] = k_pe.view(-1, 1,
|
|
self.qk_rope_head_dim)
|
|
k = k.view(-1, self.num_heads * self.qk_head_dim)
|
|
|
|
# May concat q(including q_pe), k + k_pe, v together
|
|
q, k, v = self._maybe_concat_qkv(q, k, v)
|
|
|
|
# out_scale = getattr(self.o_proj, "inv_input_scale", None)
|
|
out_scale = None # Currently we use BF16 MHA for context phase
|
|
|
|
attn_output = self.mha.forward(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_metadata,
|
|
attention_input_type=AttentionInputType.context_only,
|
|
latent_cache=latent_cache,
|
|
out_scale=out_scale,
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def forward_context_with_cached_kv(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
) -> torch.Tensor:
|
|
trtllm_attention = cast(TrtllmAttention, self.mha)
|
|
# split current q into q_nope and q_pe
|
|
q_nope, q_pe = q.view([
|
|
-1, self.num_heads, self.qk_nope_head_dim + self.qk_rope_head_dim
|
|
]).split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
|
|
# apply rope to current q_pe and k_pe
|
|
assert position_ids is not None
|
|
assert position_ids.dim() == 1 or (position_ids.dim() == 2
|
|
and position_ids.shape[0] == 1)
|
|
assert self.rotary_emb is not None
|
|
assert self.rotary_emb.head_dim == self.qk_rope_head_dim
|
|
assert q_pe.shape[0] == k_pe.shape[0]
|
|
q_pe = q_pe.contiguous().view(-1,
|
|
self.num_heads * self.qk_rope_head_dim)
|
|
q_pe, k_pe = self.rotary_emb(
|
|
position_ids[..., :attn_metadata.num_ctx_tokens], [q_pe, k_pe])
|
|
k_pe = k_pe.contiguous()
|
|
|
|
# build q for attention op
|
|
q_view = q.view(-1, self.num_heads,
|
|
self.qk_nope_head_dim + self.qk_rope_head_dim)
|
|
q_view[:, :,
|
|
self.qk_nope_head_dim:] = q_pe.view(-1, self.num_heads,
|
|
self.qk_rope_head_dim)
|
|
q = q_view.view(
|
|
-1,
|
|
self.num_heads * (self.qk_nope_head_dim + self.qk_rope_head_dim))
|
|
assert q.is_contiguous()
|
|
|
|
# append paged kv cache for mla
|
|
trtllm_attention.append_paged_kv_cache_for_mla(
|
|
compressed_kv,
|
|
k_pe,
|
|
attn_metadata,
|
|
)
|
|
|
|
# copy full_compressed_kv and full_k_pe from paged kv cache
|
|
full_compressed_kv, full_k_pe = trtllm_attention.load_paged_kv_cache_for_mla(
|
|
attn_metadata, q.dtype)
|
|
assert full_compressed_kv.shape[
|
|
0] == attn_metadata.num_ctx_cached_tokens + attn_metadata.num_ctx_tokens
|
|
assert full_compressed_kv.shape[1] == self.kv_lora_rank
|
|
assert full_k_pe.shape[
|
|
0] == attn_metadata.num_ctx_cached_tokens + attn_metadata.num_ctx_tokens
|
|
assert full_k_pe.shape[1] == self.qk_rope_head_dim
|
|
assert full_compressed_kv.is_contiguous()
|
|
assert full_k_pe.is_contiguous()
|
|
|
|
# compute full_k_nope and full_v from full_compressed_kv
|
|
full_kv = self.kv_b_proj(full_compressed_kv)
|
|
full_k_nope, full_v = full_kv.split(
|
|
[
|
|
self.num_heads * self.qk_nope_head_dim,
|
|
self.num_heads * self.v_head_dim
|
|
],
|
|
-1,
|
|
)
|
|
full_k_nope = full_k_nope.view(-1, self.num_heads,
|
|
self.qk_nope_head_dim)
|
|
full_v = full_v.view(-1, self.num_heads, self.v_head_dim)
|
|
|
|
# build full_k and full_v
|
|
tokens_per_block = attn_metadata.kv_cache_manager.tokens_per_block
|
|
# paged kv cache should be initialized to 0 to avoid NaN
|
|
paged_full_kv = torch.zeros([
|
|
attn_metadata.num_contexts, 2,
|
|
(attn_metadata.max_ctx_kv_len + tokens_per_block - 1) //
|
|
tokens_per_block, self.num_heads, tokens_per_block,
|
|
max(self.qk_nope_head_dim + self.qk_rope_head_dim, self.v_head_dim)
|
|
],
|
|
dtype=q.dtype,
|
|
device=q.device)
|
|
mla_context_kv_cache_block_offsets = trtllm_attention.set_paged_kv_cache_for_mla(
|
|
paged_full_kv,
|
|
full_k_nope,
|
|
full_v,
|
|
full_k_pe,
|
|
attn_metadata,
|
|
)
|
|
|
|
# out_scale = getattr(self.o_proj, "inv_input_scale", None)
|
|
out_scale = None # Currently we use BF16 MHA for context phase
|
|
|
|
attn_output = self.mha.forward(
|
|
q,
|
|
None,
|
|
None,
|
|
attn_metadata,
|
|
attention_input_type=AttentionInputType.context_only,
|
|
latent_cache=None,
|
|
out_scale=out_scale,
|
|
mla_context_paged_kv=paged_full_kv,
|
|
mla_context_kv_cache_block_offsets=
|
|
mla_context_kv_cache_block_offsets,
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def forward_context(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
latent_cache: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
) -> torch.Tensor:
|
|
if isinstance(self.mha, TrtllmAttention):
|
|
assert isinstance(attn_metadata, TrtllmAttentionMetadata)
|
|
trtllm_attention = cast(TrtllmAttention, self.mha)
|
|
if trtllm_attention.has_cached_kv_for_mla_context(attn_metadata):
|
|
return self.forward_context_with_cached_kv(
|
|
q, compressed_kv, k_pe, attn_metadata, position_ids)
|
|
return self.forward_context_default(q, compressed_kv, k_pe,
|
|
attn_metadata, latent_cache)
|
|
|
|
def forward_generation(
|
|
self,
|
|
q: torch.Tensor,
|
|
compressed_kv: torch.Tensor,
|
|
k_pe: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
latent_cache: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
num_tokens = q.shape[0]
|
|
q_nope, q_pe = q.view([-1, self.num_heads, self.qk_head_dim]).split(
|
|
[self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
|
|
# fused_q contains 1) the result of the following bmm with shape [num_tokens, num_heads, kv_lora_rank]
|
|
# 2) rope(q_pe) with shape [num_tokens, num_heads, qk_rope_head_dim]. rope is applied inside AttentionOp
|
|
fused_q = torch.empty(
|
|
[
|
|
num_tokens, self.num_heads,
|
|
(self.kv_lora_rank + self.qk_rope_head_dim)
|
|
],
|
|
dtype=q.dtype,
|
|
device=q.device,
|
|
)
|
|
|
|
if self.k_b_proj_trans.dtype == torch.bfloat16:
|
|
# [num_heads, num_tokens, self.qk_nope_head_dim]
|
|
q_nope_t = q_nope.transpose(0, 1)
|
|
# [num_heads, num_tokens, self.kv_lora_rank]
|
|
q_nope_out = fused_q[..., :self.kv_lora_rank].transpose(0, 1)
|
|
|
|
# [num_heads, num_tokens, self.qk_nope_head_dim] x [num_heads, kv_lora_rank, qk_nope_head_dim]
|
|
# -> [num_heads, num_tokens, kv_lora_rank] -> [num_tokens, num_heads, kv_lora_rank]
|
|
# The output of bmm is written directly into fused_q
|
|
torch.ops.trtllm.bmm_out(q_nope_t,
|
|
self.k_b_proj_trans.transpose(1, 2),
|
|
q_nope_out)
|
|
elif self.k_b_proj_trans.dtype == torch.float8_e4m3fn:
|
|
q_nope_fp8, q_nope_scales = torch.ops.trtllm.fp8_batched_quantize_1x128_permute102(
|
|
q_nope)
|
|
# [num_heads, num_tokens, self.kv_lora_rank]
|
|
q_nope_out = fused_q[..., :self.kv_lora_rank].transpose(0, 1)
|
|
|
|
torch.ops.trtllm.fp8_block_scaling_bmm_out(
|
|
q_nope_fp8, self.k_b_proj_trans, q_nope_scales,
|
|
self.k_b_proj_trans_scale, q_nope_out)
|
|
q_nope_scales = None
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Missing bmm impl for dtype: {self.k_b_proj_trans.dtype}.")
|
|
|
|
if self.apply_rotary_emb:
|
|
fused_q[..., self.kv_lora_rank:] = q_pe
|
|
fused_q = fused_q.view([
|
|
num_tokens,
|
|
self.num_heads * (self.kv_lora_rank + self.qk_rope_head_dim)
|
|
])
|
|
|
|
# out_scale = getattr(self.o_proj, "inv_input_scale", None)
|
|
out_scale = None # Although we use FP8 MLA for generation phase, the output is still in BF16
|
|
|
|
attn_out_latent = self.mqa.forward(
|
|
fused_q,
|
|
None,
|
|
None,
|
|
attn_metadata,
|
|
attention_input_type=AttentionInputType.generation_only,
|
|
out_scale=out_scale,
|
|
latent_cache=latent_cache, # kvcache and k_pe
|
|
q_pe=q_pe, # used by `invokeMLARopeGeneration`
|
|
)
|
|
fused_q = None
|
|
|
|
assert (attn_out_latent.shape[0] == q.shape[0] and
|
|
attn_out_latent.shape[1] == self.num_heads * self.kv_lora_rank)
|
|
|
|
# [seq, num_heads, kv_lora_rank]
|
|
attn_out_latent = attn_out_latent.view(
|
|
[-1, self.num_heads, self.kv_lora_rank])
|
|
|
|
attn_output = torch.empty([num_tokens, self.num_heads, self.v_head_dim],
|
|
dtype=attn_out_latent.dtype,
|
|
device=attn_out_latent.device)
|
|
|
|
if self.v_b_proj.dtype == torch.bfloat16:
|
|
# [num_heads, seq, kv_lora_rank] x [num_heads, kv_lora_rank, v_head_dim]
|
|
# -> [num_heads, seq, v_head_dim]
|
|
torch.ops.trtllm.bmm_out(attn_out_latent.transpose(0, 1),
|
|
self.v_b_proj.transpose(1, 2),
|
|
attn_output.transpose(0, 1))
|
|
elif self.v_b_proj.dtype == torch.float8_e4m3fn:
|
|
attn_out_latent, attn_out_latent_scales = torch.ops.trtllm.fp8_batched_quantize_1x128_permute102(
|
|
attn_out_latent)
|
|
|
|
torch.ops.trtllm.fp8_block_scaling_bmm_out(
|
|
attn_out_latent, self.v_b_proj, attn_out_latent_scales,
|
|
self.v_b_proj_scale, attn_output.transpose(0, 1))
|
|
attn_out_latent_scales = None
|
|
else:
|
|
raise NotImplementedError(
|
|
f"Missing bmm impl for dtype: {self.v_b_proj.dtype}.")
|
|
|
|
# [seq, num_heads * v_head_dim]
|
|
return attn_output.flatten(1, 2)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: Optional[torch.Tensor],
|
|
hidden_states: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
all_reduce_params: Optional[AllReduceParams] = None,
|
|
) -> torch.Tensor:
|
|
if self.register_to_config:
|
|
attn_output = torch.ops.trtllm.mla_custom_op(
|
|
position_ids, hidden_states, self.layer_idx_str)
|
|
else:
|
|
attn_output = self.forward_impl(position_ids, hidden_states,
|
|
attn_metadata)
|
|
attn_output = self.o_proj(attn_output,
|
|
all_reduce_params=all_reduce_params)
|
|
return attn_output
|