TensorRT-LLMs/examples/whisper/run.py
2024-08-29 17:25:07 +08:00

483 lines
19 KiB
Python
Executable File

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import re
import time
from collections import OrderedDict
from pathlib import Path
import numpy as np
import torch
from datasets import load_dataset
from tokenizer import get_tokenizer
from torch.utils.data import DataLoader
from whisper.normalizers import EnglishTextNormalizer
from whisper_utils import (N_SAMPLES, log_mel_spectrogram, pad_or_trim,
store_transcripts, write_error_stats)
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--log_level', type=str, default='warning')
parser.add_argument('--engine_dir', type=str, default='whisper_large_v3')
parser.add_argument('--results_dir', type=str, default='tmp')
parser.add_argument('--assets_dir', type=str, default='./assets')
parser.add_argument('--input_file', type=str, default=None)
parser.add_argument('--dataset',
type=str,
default="hf-internal-testing/librispeech_asr_dummy")
parser.add_argument('--name',
type=str,
default="librispeech_dummy_benchmark")
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_beams', type=int, default=1)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--enable_warmup', action='store_true')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float16'])
parser.add_argument('--accuracy_check',
action='store_true',
help="only for CI test")
return parser.parse_args()
def remove_tensor_padding(input_tensor, input_tensor_lengths=None, pad_value=0):
if input_tensor.dim() == 2:
# Text tensor case: batch, seq_len
assert torch.all(
input_tensor[:, 0] != pad_value
), "First token in each sequence should not be pad_value"
assert input_tensor_lengths is None
# Create a mask for all non-pad tokens
mask = input_tensor != pad_value
# Apply the mask to input_tensor to remove pad tokens
output_tensor = input_tensor[mask].view(1, -1)
elif input_tensor.dim() == 3:
# Audio tensor case: batch, seq_len, feature_len
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
batch_size, seq_len, feature_len = input_tensor.shape
# Initialize a list to collect valid sequences
valid_sequences = []
for i in range(batch_size):
valid_length = input_tensor_lengths[i]
valid_sequences.append(input_tensor[i, :valid_length, :])
# Concatenate all valid sequences along the batch dimension
output_tensor = torch.cat(valid_sequences, dim=0)
else:
raise ValueError("Input tensor must have 2 or 3 dimensions")
return output_tensor
def read_config(component, engine_dir):
config_path = engine_dir / component / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
model_config = OrderedDict()
model_config.update(config['pretrained_config'])
model_config.update(config['build_config'])
return model_config
class WhisperEncoding:
def __init__(self, engine_dir):
self.session = self.get_session(engine_dir)
config = read_config('encoder', engine_dir)
self.n_mels = config['n_mels']
self.dtype = config['dtype']
self.num_languages = config['num_languages']
self.encoder_config = config
def get_session(self, engine_dir):
serialize_path = engine_dir / 'encoder' / 'rank0.engine'
with open(serialize_path, 'rb') as f:
session = Session.from_serialized_engine(f.read())
return session
def get_audio_features(self, mel):
# Input_lengths here are actually encoder_output_lengths for whisper.
# Since the conv subsampling layer in the whisper decoder, seq_len would divide by 2.
input_lengths = torch.tensor(
[mel.shape[2] // 2 for _ in range(mel.shape[0])],
dtype=torch.int32,
device=mel.device)
encoder_max_input_length = torch.max(input_lengths).item()
if self.encoder_config['plugin_config']['remove_input_padding']:
mel_input_lengths = torch.full((mel.shape[0], ),
mel.shape[2],
dtype=torch.int32,
device='cuda')
# mel B,D,T -> B,T,D -> BxT, D
mel = mel.transpose(1, 2)
mel = remove_tensor_padding(mel, mel_input_lengths)
inputs = OrderedDict()
inputs['input_features'] = mel
inputs['input_lengths'] = input_lengths
output_list = [
TensorInfo('input_features', str_dtype_to_trt(self.dtype),
mel.shape),
TensorInfo('input_lengths', str_dtype_to_trt('int32'),
input_lengths.shape)
]
output_info = (self.session).infer_shapes(output_list)
logger.debug(f'output info {output_info}')
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream()
ok = self.session.run(inputs=inputs,
outputs=outputs,
stream=stream.cuda_stream)
assert ok, 'Engine execution failed'
stream.synchronize()
audio_features = outputs['encoder_output']
return audio_features, encoder_max_input_length, input_lengths
class WhisperDecoding:
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
self.decoder_config = read_config('decoder', engine_dir)
self.decoder_generation_session = self.get_session(
engine_dir, runtime_mapping, debug_mode)
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
serialize_path = engine_dir / 'decoder' / 'rank0.engine'
with open(serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
decoder_model_config = ModelConfig(
max_batch_size=self.decoder_config['max_batch_size'],
max_beam_width=self.decoder_config['max_beam_width'],
num_heads=self.decoder_config['num_attention_heads'],
num_kv_heads=self.decoder_config['num_attention_heads'],
hidden_size=self.decoder_config['hidden_size'],
vocab_size=self.decoder_config['vocab_size'],
cross_attention=True,
num_layers=self.decoder_config['num_hidden_layers'],
gpt_attention_plugin=self.decoder_config['plugin_config']
['gpt_attention_plugin'],
remove_input_padding=self.decoder_config['plugin_config']
['remove_input_padding'],
paged_kv_cache=self.decoder_config['plugin_config']
['paged_kv_cache'],
has_position_embedding=self.
decoder_config['has_position_embedding'],
dtype=self.decoder_config['dtype'],
has_token_type_embedding=False,
)
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
decoder_model_config,
decoder_engine_buffer,
runtime_mapping,
debug_mode=debug_mode)
return decoder_generation_session
def generate(self,
decoder_input_ids,
encoder_outputs,
encoder_max_input_length,
encoder_input_lengths,
eot_id,
max_new_tokens=40,
num_beams=1):
batch_size = decoder_input_ids.shape[0]
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_max_input_length = torch.max(decoder_input_lengths).item()
cross_attention_mask = torch.ones(
[batch_size, 1, encoder_max_input_length]).int().cuda()
# generation config
sampling_config = SamplingConfig(end_id=eot_id,
pad_id=eot_id,
num_beams=num_beams)
self.decoder_generation_session.setup(
decoder_input_lengths.size(0),
decoder_max_input_length,
max_new_tokens,
beam_width=num_beams,
encoder_max_input_length=encoder_max_input_length)
torch.cuda.synchronize()
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
if self.decoder_config['plugin_config']['remove_input_padding']:
# 50256 is the index of <pad> for all whisper models' decoder
WHISPER_PAD_TOKEN_ID = 50256
decoder_input_ids = remove_tensor_padding(
decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID)
if encoder_outputs.dim() == 3:
encoder_output_lens = torch.full((encoder_outputs.shape[0], ),
encoder_outputs.shape[1],
dtype=torch.int32,
device='cuda')
encoder_outputs = remove_tensor_padding(encoder_outputs,
encoder_output_lens)
output_ids = self.decoder_generation_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_outputs,
encoder_input_lengths=encoder_input_lengths,
cross_attention_mask=cross_attention_mask,
)
torch.cuda.synchronize()
# get the list of int from output_ids tensor
output_ids = output_ids.cpu().numpy().tolist()
return output_ids
class WhisperTRTLLM(object):
def __init__(self, engine_dir, debug_mode=False, assets_dir=None):
world_size = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_dir = Path(engine_dir)
self.encoder = WhisperEncoding(engine_dir)
self.decoder = WhisperDecoding(engine_dir,
runtime_mapping,
debug_mode=False)
is_multilingual = (self.decoder.decoder_config['vocab_size'] >= 51865)
if is_multilingual:
tokenizer_name = "multilingual"
assert (Path(assets_dir) / "multilingual.tiktoken").exists(
), "multilingual.tiktoken file is not existed in assets_dir"
else:
tokenizer_name = "gpt2"
assert (Path(assets_dir) / "gpt2.tiktoken").exists(
), "gpt2.tiktoken file is not existed in assets_dir"
self.tokenizer = get_tokenizer(name=tokenizer_name,
num_languages=self.encoder.num_languages,
tokenizer_dir=assets_dir)
self.eot_id = self.tokenizer.encode(
"<|endoftext|>",
allowed_special=self.tokenizer.special_tokens_set)[0]
def process_batch(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
num_beams=1):
prompt_id = self.tokenizer.encode(
text_prefix, allowed_special=self.tokenizer.special_tokens_set)
prompt_id = torch.tensor(prompt_id)
batch_size = mel.shape[0]
decoder_input_ids = prompt_id.repeat(batch_size, 1)
encoder_output, encoder_max_input_length, encoder_input_lengths = self.encoder.get_audio_features(
mel)
output_ids = self.decoder.generate(decoder_input_ids,
encoder_output,
encoder_max_input_length,
encoder_input_lengths,
self.eot_id,
max_new_tokens=96,
num_beams=num_beams)
texts = []
for i in range(len(output_ids)):
text = self.tokenizer.decode(output_ids[i][0]).strip()
texts.append(text)
return texts
def decode_wav_file(
input_file_path,
model,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
mel_filters_dir=None):
mel, total_duration = log_mel_spectrogram(input_file_path,
model.encoder.n_mels,
device='cuda',
return_duration=True,
mel_filters_dir=mel_filters_dir)
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
predictions = model.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction = normalizer(prediction)
print(f"prediction: {prediction}")
results = [(0, [""], prediction.split())]
return results, total_duration
def collate_wrapper(batch):
speeches, durations, labels, ids = [], [], [], []
for item in batch:
speech = item["audio"]["array"]
duration = speech.shape[-1]
speech = pad_or_trim(speech, N_SAMPLES)
speech = speech.astype(np.float32)
speech = torch.from_numpy(speech)
speeches.append(speech)
durations.append(duration)
labels.append(item["text"])
ids.append(item["id"])
return speeches, durations, labels, ids
def decode_dataset(
model,
dataset,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
sample_rate=16000,
mel_filters_dir=None):
librispeech_dummy = load_dataset(dataset, "clean", split="validation")
data_loader = DataLoader(librispeech_dummy,
batch_size=batch_size,
num_workers=4,
pin_memory=True,
collate_fn=collate_wrapper)
results = []
total_duration = 0
for batch in data_loader:
waveforms, durations, texts, ids = batch
total_duration += sum(durations) / sample_rate
for wave in waveforms:
assert wave.is_pinned()
features = [
log_mel_spectrogram(wave,
model.encoder.n_mels,
device='cuda',
mel_filters_dir=mel_filters_dir).unsqueeze(0)
for wave in waveforms
]
features = torch.cat(features, dim=0).type(str_dtype_to_torch(dtype))
predictions = model.process_batch(features, text_prefix, num_beams)
for wav_id, label, prediction in zip(ids, texts, predictions):
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction, label = normalizer(prediction), normalizer(label)
print(f"wav_id: {wav_id}, label: {label}, prediction: {prediction}")
results.append((wav_id, label.split(), prediction.split()))
return results, total_duration
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
model = WhisperTRTLLM(args.engine_dir, args.debug, args.assets_dir)
normalizer = EnglishTextNormalizer()
if args.enable_warmup:
results, total_duration = decode_dataset(
model,
"hf-internal-testing/librispeech_asr_dummy",
batch_size=args.batch_size,
num_beams=args.num_beams,
normalizer=normalizer,
mel_filters_dir=args.assets_dir)
start_time = time.time()
if args.input_file:
results, total_duration = decode_wav_file(
args.input_file,
model,
dtype=args.dtype,
batch_size=args.batch_size,
num_beams=args.num_beams,
mel_filters_dir=args.assets_dir)
else:
results, total_duration = decode_dataset(
model,
args.dataset,
dtype=args.dtype,
batch_size=args.batch_size,
num_beams=args.num_beams,
normalizer=normalizer,
mel_filters_dir=args.assets_dir)
elapsed = time.time() - start_time
results = sorted(results)
Path(args.results_dir).mkdir(parents=True, exist_ok=True)
store_transcripts(filename=f"{args.results_dir}/recogs-{args.name}.txt",
texts=results)
with open(f"{args.results_dir}/errs-{args.name}.txt", "w") as f:
total_error_rate = write_error_stats(f,
"test-set",
results,
enable_log=True)
if args.accuracy_check and args.dataset == "hf-internal-testing/librispeech_asr_dummy" and not args.input_file:
assert total_error_rate <= 2.8, f"Word Error rate using whisper large-v3 model should be 2.40%, but got {total_error_rate}"
rtf = elapsed / total_duration
s = f"RTF: {rtf:.4f}\n"
s += f"total_duration: {total_duration:.3f} seconds\n"
s += f"({total_duration/3600:.2f} hours)\n"
s += f"processing time: {elapsed:.3f} seconds " f"({elapsed/3600:.2f} hours)\n"
s += f"batch size: {args.batch_size}\n"
s += f"num_beams: {args.num_beams}\n"
s += f"total error rate: {total_error_rate:.2f}%\n"
print(s)
with open(f"{args.results_dir}/rtf-{args.name}.txt", "w") as f:
f.write(s)
del model