TensorRT-LLMs/tensorrt_llm/profiler.py
2025-12-16 15:57:14 -08:00

278 lines
9.4 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import platform
import time
from functools import partial
from typing import Literal, Optional, Tuple, Union
# isort: off
import torch
import tensorrt as trt
# isort: on
try:
import psutil
except ImportError:
psutil = None
try:
import pynvml
except ImportError:
pynvml = None
import traceback
from tensorrt_llm.logger import logger
from ._common import _is_building
if psutil is None:
logger.warning("A required package 'psutil' is not installed. Will not "
"monitor the host memory usages. Please install the package "
"first, e.g, 'pip install psutil'.")
if pynvml is None:
logger.warning(
"A required package 'pynvml' is not installed. Will not "
"monitor the device memory usages. Please install the package "
"first, e.g, 'pip install pynvml>=11.5.0'.")
class Timer:
def __init__(self):
self._start_times = {}
self._total_elapsed_times = {}
def start(self, tag):
self._start_times[tag] = time.time()
def stop(self, tag) -> float:
elapsed_time = time.time() - self._start_times[tag]
if tag not in self._total_elapsed_times:
self._total_elapsed_times[tag] = 0
self._total_elapsed_times[tag] += elapsed_time
return elapsed_time
def elapsed_time_in_sec(self, tag) -> float:
if tag not in self._total_elapsed_times:
return None
return self._total_elapsed_times[tag]
def reset(self):
self._start_times.clear()
self._total_elapsed_times.clear()
def summary(self):
logger.info('Profile Results')
for tag, elapsed_time in self._total_elapsed_times.items():
logger.info(f' - {tag.ljust(30, ".")}: {elapsed_time:.6f} (sec)')
_default_timer = Timer()
def start(tag):
_default_timer.start(tag)
def stop(tag):
return _default_timer.stop(tag)
def elapsed_time_in_sec(tag):
return _default_timer.elapsed_time_in_sec(tag)
def reset():
_default_timer.reset()
def summary():
_default_timer.summary()
MemUnitType = Literal['GiB', 'MiB', 'KiB']
class PyNVMLContext:
def __enter__(self):
if pynvml is not None:
pynvml.nvmlInit()
def __exit__(self, type, value, traceback):
if pynvml is not None:
pynvml.nvmlShutdown()
on_jetson_l4t = "tegra" in platform.release() and \
platform.machine() == "aarch64"
if not on_jetson_l4t:
if pynvml is not None:
with PyNVMLContext():
driver_version = pynvml.nvmlSystemGetDriverVersion()
if pynvml.__version__ < '11.5.0' or driver_version < '526':
logger.warning(
f'Found pynvml=={pynvml.__version__} and cuda driver version '
f'{driver_version}. Please use pynvml>=11.5.0 and cuda '
f'driver>=526 to get accurate memory usage.')
# Support legacy pynvml. Note that an old API could return
# wrong GPU memory usage.
_device_get_memory_info_fn = pynvml.nvmlDeviceGetMemoryInfo
else:
_device_get_memory_info_fn = partial(
pynvml.nvmlDeviceGetMemoryInfo,
version=pynvml.nvmlMemory_v2,
)
def host_memory_info(pid: Optional[int] = None) -> Tuple[int, int, int]:
if psutil is not None:
process = psutil.Process(pid)
# USS reports the amount of memory that would be freed if the process
# was terminated right now.
# https://psutil.readthedocs.io/en/latest/index.html#psutil.Process.memory_full_info
vmem = psutil.virtual_memory()
total_mem = vmem.total
free_mem = vmem.available
alloc_mem = process.memory_full_info().uss
return alloc_mem, free_mem, total_mem
return 0, 0, 0 # used, free, total
def device_memory_info(
device: Optional[Union[torch.device,
int]] = None) -> Tuple[int, int, int]:
if on_jetson_l4t:
if not getattr(device_memory_info, "_has_logged_jetson_warning", False):
logger.warning(
"Device memory monitoring is not fully supported on Jetson/Tegra. Reporting 0 usage."
)
device_memory_info._has_logged_jetson_warning = True
return 0, 0, 0
if pynvml is not None:
if device is None:
device = torch.cuda.current_device()
index = device.index if isinstance(device, torch.device) else device
with PyNVMLContext():
handle = pynvml.nvmlDeviceGetHandleByIndex(index)
mem_info = _device_get_memory_info_fn(handle)
return mem_info.used, mem_info.free, mem_info.total
return 0, 0, 0 # used, free, total
def bytes_to_target_unit(mem_bytes: int, unit: MemUnitType) -> float:
units = {'GiB': 1 << 30, 'MiB': 1 << 20, 'KiB': 1 << 10}
_rename_map = {'GB': 'GiB', 'MB': 'MiB', 'KB': 'KiB'}
if unit not in units:
unit = _rename_map[unit]
return float(mem_bytes) / units[unit]
def _format(mem_bytes: int, unit: MemUnitType) -> str:
mem_usage = bytes_to_target_unit(mem_bytes, unit)
return f'{mem_usage:.4f} ({unit})'
def _print_mem_message(msg: str, tag: Optional[str] = None):
if tag:
msg = f'{tag} - {msg}'
logger.info(f'[MemUsage] {msg}')
def print_host_memory_usage(tag: Optional[str] = None,
unit: MemUnitType = 'GiB'):
if psutil is None:
return
alloc_mem, _, _ = host_memory_info()
msg = f'Allocated Host Memory {_format(alloc_mem, unit)}'
_print_mem_message(msg, tag)
def print_device_memory_usage(
tag: Optional[str] = None,
unit: MemUnitType = 'GiB',
device: Optional[Union[torch.device, int]] = None,
):
alloc_mem, _, _ = device_memory_info(device)
msg = f'Allocated Device Memory {_format(alloc_mem, unit)}'
_print_mem_message(msg, tag)
def print_memory_usage(
tag: Optional[str] = None,
unit: MemUnitType = 'GiB',
device: Optional[Union[torch.device, int]] = None,
):
alloc_host_mem, _, _ = host_memory_info()
alloc_device_mem, _, _ = device_memory_info(device=device)
msg = f'Allocated Memory: Host {_format(alloc_host_mem, unit)} '\
f'Device {_format(alloc_device_mem, unit)}'
_print_mem_message(msg, tag)
@_is_building
def check_gpt_mem_usage(engine, kv_dtype, use_gpt_attention_plugin,
paged_kv_cache, max_batch_size, max_beam_width,
max_seq_len, local_num_kv_heads, head_size,
num_layers) -> int:
# Get the amount of memory
runtime = trt.Runtime(logger.trt_logger)
# 1. TensorRT engine activation memory
activation_size = 0
try:
cuda_engine = runtime.deserialize_cuda_engine(engine)
assert cuda_engine is not None
activation_size = cuda_engine.device_memory_size_v2 / 1024 / 1024
del cuda_engine
except Exception:
logger.warning(
f'Exception when deserializing engine: {traceback.format_exc()}')
logger.warning(f'Activation memory size will be regarded as 0.')
logger.info(f'Activation memory size: {activation_size:.2f} MiB')
# 2. Weights
weights_size = bytes_to_target_unit(engine.nbytes, 'MiB')
logger.info(f'Weights memory size: {weights_size:.2f} MiB')
# 3. Estimated max KV Cache size
kv_cache_size = max_batch_size * max_beam_width * 2 * local_num_kv_heads * max_seq_len * head_size * num_layers * kv_dtype.itemsize
# without plugin, we need two set of kv cache buffers,
# one for inputs, and the other for outputs.
if not use_gpt_attention_plugin:
kv_cache_size *= 2
kv_cache_size = bytes_to_target_unit(kv_cache_size, 'MiB')
logger.info(f'Max KV Cache memory size: {kv_cache_size:.2f} MiB')
# Estimated total amount of memory
est_memory_size = activation_size + weights_size + kv_cache_size
logger.info(
f'Estimated max memory usage on runtime: {est_memory_size:.2f} MiB')
_, _, total_mem = device_memory_info(torch.cuda.current_device())
total_mem = bytes_to_target_unit(total_mem, 'MiB')
if est_memory_size > total_mem:
logger.warning(
f'Engine is successfully built, but GPU Memory ({total_mem:.2f} MB)'
' may not be enough when running inference on max shape.')
if paged_kv_cache:
logger.warning(f'Since paged_kv_cache is enabled, the max KV Cache '
'memory size is a estimate for very extreme cases, '
'it\'s possible that most cases won\'t meet OOM.')
else:
logger.warning(f'Enabling `--paged_kv_cache` could help reduce the '
'GPU memory usage on runtime.')
return est_memory_size