TensorRT-LLMs/tensorrt_llm/_torch/distributed.py
QI JUN d167cbd5bb
refactor: remove ParallelConfig in tensorrt_llm._torch.distributed module (#3370)
* remove tensorrt_llm._torch.distributed.ParallelConfig

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix ci

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix ci

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* clean

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix embedding test

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix comments

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* polish

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* fix ci

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

* rebase

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>

---------

Signed-off-by: junq <22017000+QiJune@users.noreply.github.com>
Co-authored-by: hlu1 <14827759+hlu1@users.noreply.github.com>
2025-04-11 15:34:20 -07:00

304 lines
11 KiB
Python

import atexit
import os
import threading
from typing import List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import nn
from tensorrt_llm.functional import (AllReduceConfig, AllReduceFusionOp,
AllReduceParams, AllReduceStrategy)
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.plugin.plugin import CustomAllReduceHelper
_thread_local = threading.local()
def get_allreduce_workspace(mapping: Mapping) -> torch.LongTensor:
if not hasattr(_thread_local, 'allreduce_workspaces'):
_thread_local.allreduce_workspaces = {}
allreduce_workspaces = _thread_local.allreduce_workspaces
if mapping not in allreduce_workspaces:
ipc_buffers, workspace = CustomAllReduceHelper.allocate_workspace(
mapping,
CustomAllReduceHelper.max_workspace_size_auto(mapping.tp_size),
)
allreduce_workspaces[mapping] = (ipc_buffers, workspace)
return allreduce_workspaces[mapping][1]
def get_deepseek_allreduce_workspace(mapping: Mapping) -> torch.LongTensor:
if not hasattr(_thread_local, 'deepseek_allreduce_workspaces'):
_thread_local.deepseek_allreduce_workspaces = {}
deepseek_allreduce_workspaces = _thread_local.deepseek_allreduce_workspaces
if mapping not in deepseek_allreduce_workspaces:
ipc_buffers, workspace = CustomAllReduceHelper.allocate_allreduce_fusion_workspace(
mapping,
CustomAllReduceHelper.max_workspace_size_auto(mapping.tp_size),
)
deepseek_allreduce_workspaces[mapping] = (ipc_buffers, workspace)
return deepseek_allreduce_workspaces[mapping][1]
def allreduce(
input: torch.Tensor,
workspace: Optional[torch.LongTensor],
mapping: Mapping,
strategy: AllReduceStrategy = AllReduceStrategy.AUTO,
config: AllReduceConfig = AllReduceConfig(0),
all_reduce_params: Optional[AllReduceParams] = None
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor], Tuple[
torch.Tensor, torch.Tensor, torch.Tensor]]:
'''
Add an operation that performs a collective all-reduce.
The input tensors in the different ranks must have the same shape.
The output tensor will have that same shape with the input tensor.
The output tensor will be replicated among the TP group.
Noting that it is not an in-place operation like torch.distributed.all_reduce.
That operation is implemented using a torch op that wraps the NCCL all-reduce
collective operation and custom one-shot/two-shot allreduce kernels. See
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allreduce
for details.
Args:
input (Tensor): The input tensor.
mapping (Mapping): The parallel mapping.
strategy (AllReduceStrategy): NCCL delegates all-reduce to NCCL while ONESHOT and TWOSHOT are custom latency-optimal algorithms.
AUTO chooses amongst the three based on a message-size heuristic.
config (AllReduceConfig): The config for custom allreduce kernels.
all_reduce_params (AllReduceParams): The parameters for the fused ops into the allreduce op.
Returns:
The reduced tensor and an optional intermediate tensor if fused.
'''
if mapping.tp_size == 1 or (all_reduce_params is not None and
all_reduce_params.enable_allreduce == False):
return input
if all_reduce_params is None:
all_reduce_params = AllReduceParams()
is_fused = all_reduce_params.fusion_op == AllReduceFusionOp.RESIDUAL_RMS_NORM or \
all_reduce_params.fusion_op == AllReduceFusionOp.RESIDUAL_RMS_NORM_QUANT_FP8 or \
all_reduce_params.fusion_op == AllReduceFusionOp.RESIDUAL_RMS_NORM_QUANT_NVFP4
reduce_fusion_inputs = []
if is_fused:
if all_reduce_params.has_bias() == 1:
reduce_fusion_inputs.append(all_reduce_params.bias)
reduce_fusion_inputs.append(all_reduce_params.residual)
if all_reduce_params.has_affine() == 1:
reduce_fusion_inputs.append(all_reduce_params.norm_weight)
if all_reduce_params.has_scale() == 1:
reduce_fusion_inputs.append(all_reduce_params.scale)
out = torch.ops.trtllm.allreduce(
input,
workspace,
reduce_fusion_inputs,
mapping.tp_group,
int(strategy),
int(config),
int(all_reduce_params.fusion_op),
float(all_reduce_params.eps),
all_reduce_params.has_affine(),
all_reduce_params.has_bias(),
all_reduce_params.has_scale(),
)
if all_reduce_params.fusion_op == AllReduceFusionOp.RESIDUAL_RMS_NORM_QUANT_NVFP4:
return out[0], out[1], out[2]
elif is_fused:
return out[0], out[1]
else:
return out[0]
def userbuffers_allreduce_finalize(
input: torch.Tensor,
force_applying_finalize: bool = False) -> torch.Tensor:
output = torch.ops.trtllm.userbuffers_allreduce_finalize(
input, force_applying_finalize)
return output
def allgather(input: torch.Tensor,
mapping: Mapping,
gather_dim: int = -1) -> torch.Tensor:
'''
Add an operation that performs a collective all-gather.
The input tensors in the different ranks must have the same shape.
The output tensor will be replicated among the TP group.
Given the 'section_size = input.shape[gather_dim]', each rank
contributes a section of its input tensor that correspond to
'rank*section_size:(rank+1)*section_size',
and 'output.shape[gather_dim] = input.shape[gather_dim] * tp_group_size'.
That operation is implemented using a torch op that wraps the NCCL all-gather
collective operation. See
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#allgather
for details.
Args:
input (Tensor): The input tensor.
mapping (Mapping): The parallel mapping.
gather_dim (int): Gather along given dimension. By default -1.
Returns:
The gathered tensor.
'''
if mapping.tp_size == 1:
return input
output = torch.ops.trtllm.allgather(
input,
mapping.tp_group,
)
if gather_dim < 0:
gather_dim += input.ndim
output = torch.movedim(output, 0, gather_dim)
input_shape = input.size()
output = output.reshape(input_shape[:gather_dim] +
(mapping.tp_size * input_shape[gather_dim], ) +
input_shape[gather_dim + 1:])
return output
def reducescatter(input: torch.Tensor,
mapping: Mapping,
scatter_dim: int = -1) -> torch.Tensor:
if mapping.tp_size == 1:
return input
output = torch.ops.trtllm.reducescatter(
input,
mapping.tp_group,
)
if scatter_dim < 0:
scatter_dim += input.ndim
output = torch.movedim(output, 0, scatter_dim)
input_shape = input.size()
output = output.reshape(input_shape[:scatter_dim] +
(input_shape[scatter_dim] // mapping.tp_size, ) +
input_shape[scatter_dim + 1:])
return output
class AllReduce(nn.Module):
def __init__(self,
mapping: Mapping,
strategy: AllReduceStrategy = AllReduceStrategy.AUTO):
super().__init__()
self.mapping = mapping
self.workspace = None
self.strategy = strategy
if self.mapping.tp_size > 1:
if self.strategy != AllReduceStrategy.UB:
self.workspace = get_allreduce_workspace(mapping)
def forward(
self,
input: torch.Tensor,
*,
all_reduce_params: Optional[AllReduceParams] = None,
) -> torch.Tensor:
output = allreduce(input,
self.workspace,
self.mapping,
all_reduce_params=all_reduce_params,
strategy=self.strategy)
return output
class DeepseekAllReduce(nn.Module):
def __init__(self, mapping: Mapping):
super().__init__()
self.mapping = mapping
self.workspace = None
if self.mapping.tp_size > 1:
self.workspace = get_deepseek_allreduce_workspace(mapping)
def forward(
self,
hidden_states: torch.Tensor,
reduce_fusion_inputs: List[torch.Tensor],
eps: float,
fusion_op: AllReduceFusionOp,
) -> List[torch.Tensor]:
"""
hidden_states: hidden_states of the model
reduce_fusion_inputs: [residual, norm_weight, scale (if using FP4 quantization)]
eps: epsilon for RMSNorm
fusion_op: AllReduceFusionOp Type, currently supports RMSNorm:
* RESIDUAL_RMS_NORM: allreduce + residual + Norm
* RESIDUAL_RMS_NORM_QUANT_NVFP4: allreduce + residual + Norm + fp4 quantization
output:
* [hidden_states, residual] if using RESIDUAL_RMS_NORM fusion_op
* [act_fp4, act_sf, residual] if using RESIDUAL_RMS_NORM_QUANT_NVFP4 fusion_op
"""
output = torch.ops.trtllm.deepseek_allreduce_fusion(
input=hidden_states,
workspace=self.workspace,
reduce_fusion_inputs=reduce_fusion_inputs,
rank=self.mapping.tp_rank,
nranks=self.mapping.tp_size,
eps=eps,
fusion_op=fusion_op,
)
if len(output) == 0:
raise ValueError(f"Unsupported fusion op: {fusion_op}")
return output
class PPComm:
# PP communication using torch.distributed with nccl backend
def __init__(self, global_mapping: Mapping):
self.mapping = global_mapping
if not dist.is_initialized():
master_ip = os.getenv("MASTER_ADDR", "localhost")
master_port = os.getenv("MASTER_PORT", "6000")
init_method = f"tcp://{master_ip}:{master_port}"
dist.init_process_group(backend="nccl",
init_method=init_method,
world_size=global_mapping.world_size,
rank=global_mapping.rank)
atexit.register(self._cleanup)
# Force NCCL initialization and rank population via PyTorch distributed barrier.
# This is necessary for NOW if using pp + tp because our custom nccl allreduce
# op for tp groups can interfere with PyTorch's NCCL initialization when PyTorch
# distributed performs the first comm. op and kick off nccl init. The barrier here
# ensures proper NCCL setup and GPU-procs binding at beginning.
dist.barrier(device_ids=[torch.cuda.current_device()])
def _cleanup(self):
if dist.is_initialized():
dist.destroy_process_group()
def send(self,
tensor: torch.Tensor,
dest: Optional[int] = None,
tag: Optional[int] = None):
if dest is None:
dest = self.mapping.next_pp_rank()
dist.send(tensor, dest, tag=tag)
def recv(self,
tensor: torch.Tensor,
src: Optional[int] = None,
tag: Optional[int] = None):
if src is None:
src = self.mapping.prev_pp_rank()
dist.recv(tensor, src, tag=tag)